| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elunop | Structured version Visualization version GIF version | ||
| Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elunop | ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ V) | |
| 2 | fof 6772 | . . . 4 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
| 3 | ax-hilex 30928 | . . . 4 ⊢ ℋ ∈ V | |
| 4 | fex 7200 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V) |
| 7 | foeq1 6768 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ)) | |
| 8 | fveq1 6857 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 9 | fveq1 6857 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
| 10 | 8, 9 | oveq12d 7405 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 11 | 10 | eqeq1d 2731 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
| 12 | 11 | 2ralbidv 3201 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
| 13 | 7, 12 | anbi12d 632 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
| 14 | df-unop 31772 | . . 3 ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | |
| 15 | 13, 14 | elab2g 3647 | . 2 ⊢ (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
| 16 | 1, 6, 15 | pm5.21nii 378 | 1 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 ·ih csp 30851 UniOpcuo 30878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-unop 31772 |
| This theorem is referenced by: unop 31844 unopf1o 31845 cnvunop 31847 counop 31850 idunop 31907 lnopunii 31941 elunop2 31942 |
| Copyright terms: Public domain | W3C validator |