HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop Structured version   Visualization version   GIF version

Theorem elunop 29953
Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem elunop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3426 . 2 (𝑇 ∈ UniOp → 𝑇 ∈ V)
2 fof 6633 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
3 ax-hilex 29080 . . . 4 ℋ ∈ V
4 fex 7042 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
52, 3, 4sylancl 589 . . 3 (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V)
65adantr 484 . 2 ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V)
7 foeq1 6629 . . . 4 (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ))
8 fveq1 6716 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
9 fveq1 6716 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
108, 9oveq12d 7231 . . . . . 6 (𝑡 = 𝑇 → ((𝑡𝑥) ·ih (𝑡𝑦)) = ((𝑇𝑥) ·ih (𝑇𝑦)))
1110eqeq1d 2739 . . . . 5 (𝑡 = 𝑇 → (((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
12112ralbidv 3120 . . . 4 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
137, 12anbi12d 634 . . 3 (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
14 df-unop 29924 . . 3 UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦))}
1513, 14elab2g 3589 . 2 (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
161, 6, 15pm5.21nii 383 1 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  wf 6376  ontowfo 6378  cfv 6380  (class class class)co 7213  chba 29000   ·ih csp 29003  UniOpcuo 29030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-hilex 29080
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-unop 29924
This theorem is referenced by:  unop  29996  unopf1o  29997  cnvunop  29999  counop  30002  idunop  30059  lnopunii  30093  elunop2  30094
  Copyright terms: Public domain W3C validator