Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop Structured version   Visualization version   GIF version

Theorem elunop 29665
 Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem elunop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝑇 ∈ UniOp → 𝑇 ∈ V)
2 fof 6566 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
3 ax-hilex 28792 . . . 4 ℋ ∈ V
4 fex 6967 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
52, 3, 4sylancl 589 . . 3 (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V)
65adantr 484 . 2 ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V)
7 foeq1 6562 . . . 4 (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ))
8 fveq1 6645 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
9 fveq1 6645 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
108, 9oveq12d 7154 . . . . . 6 (𝑡 = 𝑇 → ((𝑡𝑥) ·ih (𝑡𝑦)) = ((𝑇𝑥) ·ih (𝑇𝑦)))
1110eqeq1d 2800 . . . . 5 (𝑡 = 𝑇 → (((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
12112ralbidv 3164 . . . 4 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
137, 12anbi12d 633 . . 3 (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
14 df-unop 29636 . . 3 UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦))}
1513, 14elab2g 3616 . 2 (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))))
161, 6, 15pm5.21nii 383 1 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3441  ⟶wf 6321  –onto→wfo 6323  ‘cfv 6325  (class class class)co 7136   ℋchba 28712   ·ih csp 28715  UniOpcuo 28742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5296  ax-hilex 28792 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-unop 29636 This theorem is referenced by:  unop  29708  unopf1o  29709  cnvunop  29711  counop  29714  idunop  29771  lnopunii  29805  elunop2  29806
 Copyright terms: Public domain W3C validator