Home | Metamath
Proof Explorer Theorem List (p. 316 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29267) |
Hilbert Space Explorer
(29268-30790) |
Users' Mathboxes
(30791-46478) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | suborng 31501 | Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) | ||
Theorem | subofld 31502 | Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ((𝐹 ∈ oField ∧ (𝐹 ↾s 𝐴) ∈ Field) → (𝐹 ↾s 𝐴) ∈ oField) | ||
Theorem | isarchiofld 31503* | Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐻 = (ℤRHom‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∃𝑛 ∈ ℕ 𝑥 < (𝐻‘𝑛))) | ||
Theorem | rhmdvdsr 31504 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
Theorem | rhmopp 31505 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
Theorem | elrhmunit 31506 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
Theorem | rhmdvd 31507 | A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ / = (/r‘𝑆) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) | ||
Theorem | rhmunitinv 31508 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
Theorem | kerunit 31509 | If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) → 1 = 0 ) | ||
Syntax | cresv 31510 | Extend class notation with the scalar restriction operation. |
class ↾v | ||
Definition | df-resv 31511* | Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.) |
⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉))) | ||
Theorem | reldmresv 31512 | The scalar restriction is a proper operator, so it can be used with ovprc1 7308. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ Rel dom ↾v | ||
Theorem | resvval 31513 | Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) | ||
Theorem | resvid2 31514 | General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
Theorem | resvval2 31515 | Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | ||
Theorem | resvsca 31516 | Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) | ||
Theorem | resvlem 31517 | Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | resvlemOLD 31518 | Obsolete version of resvlem 31517 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ 5 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | resvbas 31519 | Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
Theorem | resvbasOLD 31520 | Obsolete proof of resvbas 31519 as of 31-Oct-2024. Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
Theorem | resvplusg 31521 | +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | resvplusgOLD 31522 | Obsolete proof of resvplusg 31521 as of 31-Oct-2024. +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | resvvsca 31523 | ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | resvvscaOLD 31524 | Obsolete proof of resvvsca 31523 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | resvmulr 31525 | .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝐻)) | ||
Theorem | resvmulrOLD 31526 | Obsolete proof of resvmulr 31525 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝐻)) | ||
Theorem | resv0g 31527 | 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 0 = (0g‘𝐻)) | ||
Theorem | resv1r 31528 | 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 1 = (1r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) | ||
Theorem | resvcmn 31529 | Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd)) | ||
Theorem | gzcrng 31530 | The gaussian integers form a commutative ring. (Contributed by Thierry Arnoux, 18-Mar-2018.) |
⊢ (ℂfld ↾s ℤ[i]) ∈ CRing | ||
Theorem | reofld 31531 | The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ℝfld ∈ oField | ||
Theorem | nn0omnd 31532 | The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ oMnd | ||
Theorem | rearchi 31533 | The field of the real numbers is Archimedean. See also arch 12219. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
⊢ ℝfld ∈ Archi | ||
Theorem | nn0archi 31534 | The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ Archi | ||
Theorem | xrge0slmod 31535 | The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ 𝑊 = (𝐺 ↾v (0[,)+∞)) ⇒ ⊢ 𝑊 ∈ SLMod | ||
Theorem | qusker 31536* | The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑉 = (Base‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 0 = (0g‘𝑁) ⇒ ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → (◡𝐹 “ { 0 }) = 𝐺) | ||
Theorem | eqgvscpbl 31537 | The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∼ 𝑌 → (𝐾 · 𝑋) ∼ (𝐾 · 𝑌))) | ||
Theorem | qusvscpbl 31538* | The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ ∙ = ( ·𝑠 ‘𝑁) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) | ||
Theorem | qusscaval 31539 | Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ ∙ = ( ·𝑠 ‘𝑁) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | ||
Theorem | imaslmod 31540* | The image structure of a left module is a left module. (Contributed by Thierry Arnoux, 15-May-2023.) |
⊢ (𝜑 → 𝑁 = (𝐹 “s 𝑀)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘 · 𝑎)) = (𝐹‘(𝑘 · 𝑏)))) & ⊢ (𝜑 → 𝑀 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 ∈ LMod) | ||
Theorem | quslmod 31541 | If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) ⇒ ⊢ (𝜑 → 𝑁 ∈ LMod) | ||
Theorem | quslmhm 31542* | If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | ecxpid 31543 | The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) | ||
Theorem | eqg0el 31544 | Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ ∼ = (𝐺 ~QG 𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) | ||
Theorem | qsxpid 31545 | The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴}) | ||
Theorem | qusxpid 31546 | The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) | ||
Theorem | qustriv 31547 | The quotient of a group 𝐺 by itself is trivial. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐵)) ⇒ ⊢ (𝐺 ∈ Grp → (Base‘𝑄) = {𝐵}) | ||
Theorem | qustrivr 31548 | Converse of qustriv 31547. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) | ||
Theorem | znfermltl 31549 | Fermat's little theorem in ℤ/nℤ. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑃) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ ↑ = (.g‘(mulGrp‘𝑍)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → (𝑃 ↑ 𝐴) = 𝐴) | ||
Theorem | islinds5 31550* | A set is linearly independent if and only if it has no non-trivial representations of zero. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝑊) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) | ||
Theorem | ellspds 31551* | Variation on ellspd 20998. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝑉 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) | ||
Theorem | 0ellsp 31552 | Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝐵) → 0 ∈ (𝑁‘𝑆)) | ||
Theorem | 0nellinds 31553 | The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023.) |
⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0 ∈ 𝐹) | ||
Theorem | rspsnel 31554* | Membership in a principal ideal. Analogous to lspsnel 20254. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) | ||
Theorem | rspsnid 31555 | A principal ideal contains the element that generates it. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (𝐾‘{𝐺})) | ||
Theorem | elrsp 31556* | Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) | ||
Theorem | rspidlid 31557 | The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐾‘𝐼) = 𝐼) | ||
Theorem | pidlnz 31558 | A principal ideal generated by a nonzero element is not the zero ideal. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐾‘{𝑋}) ≠ { 0 }) | ||
Theorem | lbslsp 31559* | Any element of a left module 𝑀 can be expressed as a linear combination of the elements of a basis 𝑉 of 𝑀. (Contributed by Thierry Arnoux, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝑉 ∈ (LBasis‘𝑀)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) | ||
Theorem | lindssn 31560 | Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → {𝑋} ∈ (LIndS‘𝑊)) | ||
Theorem | lindflbs 31561 | Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝑊) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑆 ∈ NzRing) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) | ||
Theorem | linds2eq 31562 | Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.) |
⊢ 𝐹 = (Base‘(Scalar‘𝑊)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐵 ∈ (LIndS‘𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝐹) & ⊢ (𝜑 → 𝐿 ∈ 𝐹) & ⊢ (𝜑 → 𝐾 ≠ 0 ) & ⊢ (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ∧ 𝐾 = 𝐿)) | ||
Theorem | lindfpropd 31563* | Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 LIndF 𝐾 ↔ 𝑋 LIndF 𝐿)) | ||
Theorem | lindspropd 31564* | Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) | ||
The sumset (also called the Minkowski sum) of two subsets 𝐴 and 𝐵, is defined to be the set of all sums of an element from 𝐴 with an element from 𝐵. The sumset operation can be used for both group (additive) operations and ring (multiplicative) operations. | ||
Theorem | elgrplsmsn 31565* | Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) | ||
Theorem | lsmsnorb 31566* | The sumset of a group with a single element is the element's orbit by the group action. See gaorb 18902. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔 + 𝑥) = 𝑦)} & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊕ {𝑋}) = [𝑋] ∼ ) | ||
Theorem | lsmsnorb2 31567* | The sumset of a single element with a group is the element's orbit by the group action. See gaorb 18902. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) | ||
Theorem | elringlsm 31568* | Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐸 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 𝑍 = (𝑥 · 𝑦))) | ||
Theorem | elringlsmd 31569 | Membership in a product of two subsets of a ring, one direction. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐸 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹)) | ||
Theorem | ringlsmss 31570 | Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐸 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐸 × 𝐹) ⊆ 𝐵) | ||
Theorem | ringlsmss1 31571 | The product of an ideal 𝐼 of a commutative ring 𝑅 with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ⊆ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) | ||
Theorem | ringlsmss2 31572 | The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐸 ⊆ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝐸 × 𝐼) ⊆ 𝐼) | ||
Theorem | lsmsnpridl 31573 | The product of the ring with a single element is equal to the principal ideal generated by that element. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐵 × {𝑋}) = (𝐾‘{𝑋})) | ||
Theorem | lsmsnidl 31574 | The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ × = (LSSum‘𝐺) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅)) | ||
Theorem | lsmidllsp 31575 | The sum of two ideals is the ideal generated by their union. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝐼 ⊕ 𝐽) = (𝐾‘(𝐼 ∪ 𝐽))) | ||
Theorem | lsmidl 31576 | The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝐼 ⊕ 𝐽) ∈ (LIdeal‘𝑅)) | ||
Theorem | lsmssass 31577 | Group sum is associative, subset version (see lsmass 19264). (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑅 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ⊆ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) | ||
Theorem | grplsm0l 31578 | Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ({ 0 } ⊕ 𝐴) = 𝐴) | ||
Theorem | grplsmid 31579 | The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ({𝑋} ⊕ 𝐴) = 𝐴) | ||
Theorem | quslsm 31580 | Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} ⊕ 𝑆)) | ||
Theorem | qusima 31581* | The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) | ||
Theorem | nsgqus0 31582 | A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) ⇒ ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) | ||
Theorem | nsgmgclem 31583* | Lemma for nsgmgc 31584. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝑄)) ⇒ ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺)) | ||
Theorem | nsgmgc 31584* | There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ 𝐽 = (𝑉MGalConn𝑊) & ⊢ 𝑉 = (toInc‘𝑆) & ⊢ 𝑊 = (toInc‘𝑇) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸𝐽𝐹) | ||
Theorem | nsgqusf1olem1 31585* | Lemma for nsgqusf1o 31588. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) | ||
Theorem | nsgqusf1olem2 31586* | Lemma for nsgqusf1o 31588. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐸 = 𝑇) | ||
Theorem | nsgqusf1olem3 31587* | Lemma for nsgqusf1o 31588. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐹 = 𝑆) | ||
Theorem | nsgqusf1o 31588* | The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) | ||
Theorem | intlidl 31589 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∩ 𝐶 ∈ (LIdeal‘𝑅)) | ||
Theorem | rhmpreimaidl 31590 | The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
Theorem | kerlidl 31591 | The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 “ { 0 }) ∈ 𝐼) | ||
Theorem | 0ringidl 31592 | The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{ 0 }}) | ||
Theorem | elrspunidl 31593* | Elementhood to the span of a union of ideals. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ⊆ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘∪ 𝑆) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝑆)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘 ∈ 𝑆 (𝑎‘𝑘) ∈ 𝑘))) | ||
Theorem | lidlincl 31594 | Ideals are closed under intersection. (Contributed by Thierry Arnoux, 5-Jul-2024.) |
⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐽 ∈ 𝑈) → (𝐼 ∩ 𝐽) ∈ 𝑈) | ||
Theorem | idlinsubrg 31595 | The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑉 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼 ∈ 𝑈) → (𝐼 ∩ 𝐴) ∈ 𝑉) | ||
Theorem | rhmimaidl 31596 | The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (LIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵 ∧ 𝐼 ∈ 𝑇) → (𝐹 “ 𝐼) ∈ 𝑈) | ||
Syntax | cprmidl 31597 | Extend class notation with the class of prime ideals. |
class PrmIdeal | ||
Definition | df-prmidl 31598* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see prmidl2 31603 and isprmidlc 31610. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 14-Jan-2024.) |
⊢ PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | prmidlval 31599* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | isprmidl 31600* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |