Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-uss | Structured version Visualization version GIF version |
Description: Define the uniform structure extractor function. Similarly with df-topn 17115 this differs from df-unif 16966 when a structure has been restricted using df-ress 16923; in this case the UnifSet component will still have a uniform set over the larger set, and this function fixes this by restricting the uniform set as well. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
Ref | Expression |
---|---|
df-uss | ⊢ UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuss 23386 | . 2 class UnifSt | |
2 | vf | . . 3 setvar 𝑓 | |
3 | cvv 3430 | . . 3 class V | |
4 | 2 | cv 1540 | . . . . 5 class 𝑓 |
5 | cunif 16953 | . . . . 5 class UnifSet | |
6 | 4, 5 | cfv 6430 | . . . 4 class (UnifSet‘𝑓) |
7 | cbs 16893 | . . . . . 6 class Base | |
8 | 4, 7 | cfv 6430 | . . . . 5 class (Base‘𝑓) |
9 | 8, 8 | cxp 5586 | . . . 4 class ((Base‘𝑓) × (Base‘𝑓)) |
10 | crest 17112 | . . . 4 class ↾t | |
11 | 6, 9, 10 | co 7268 | . . 3 class ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓))) |
12 | 2, 3, 11 | cmpt 5161 | . 2 class (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓)))) |
13 | 1, 12 | wceq 1541 | 1 wff UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓)))) |
Colors of variables: wff setvar class |
This definition is referenced by: ussval 23392 |
Copyright terms: Public domain | W3C validator |