Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝑊 ∈ UnifSp → 𝑊 ∈ V) |
2 | | 0nep0 5280 |
. . . . 5
⊢ ∅
≠ {∅} |
3 | | isusp.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) |
4 | | fvprc 6766 |
. . . . . . . . . . . 12
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
5 | 3, 4 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (¬
𝑊 ∈ V → 𝐵 = ∅) |
6 | 5 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (¬
𝑊 ∈ V →
(UnifOn‘𝐵) =
(UnifOn‘∅)) |
7 | | ust0 23371 |
. . . . . . . . . 10
⊢
(UnifOn‘∅) = {{∅}} |
8 | 6, 7 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (¬
𝑊 ∈ V →
(UnifOn‘𝐵) =
{{∅}}) |
9 | 8 | eleq2d 2824 |
. . . . . . . 8
⊢ (¬
𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 ∈ {{∅}})) |
10 | | isusp.2 |
. . . . . . . . . 10
⊢ 𝑈 = (UnifSt‘𝑊) |
11 | 10 | fvexi 6788 |
. . . . . . . . 9
⊢ 𝑈 ∈ V |
12 | 11 | elsn 4576 |
. . . . . . . 8
⊢ (𝑈 ∈ {{∅}} ↔ 𝑈 = {∅}) |
13 | 9, 12 | bitrdi 287 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 = {∅})) |
14 | | fvprc 6766 |
. . . . . . . . 9
⊢ (¬
𝑊 ∈ V →
(UnifSt‘𝑊) =
∅) |
15 | 10, 14 | eqtrid 2790 |
. . . . . . . 8
⊢ (¬
𝑊 ∈ V → 𝑈 = ∅) |
16 | 15 | eqeq1d 2740 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V → (𝑈 = {∅} ↔ ∅ =
{∅})) |
17 | 13, 16 | bitrd 278 |
. . . . . 6
⊢ (¬
𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ =
{∅})) |
18 | 17 | necon3bbid 2981 |
. . . . 5
⊢ (¬
𝑊 ∈ V → (¬
𝑈 ∈
(UnifOn‘𝐵) ↔
∅ ≠ {∅})) |
19 | 2, 18 | mpbiri 257 |
. . . 4
⊢ (¬
𝑊 ∈ V → ¬
𝑈 ∈
(UnifOn‘𝐵)) |
20 | 19 | con4i 114 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝐵) → 𝑊 ∈ V) |
21 | 20 | adantr 481 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)) → 𝑊 ∈ V) |
22 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (UnifSt‘𝑤) = (UnifSt‘𝑊)) |
23 | 22, 10 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (UnifSt‘𝑤) = 𝑈) |
24 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
25 | 24, 3 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
26 | 25 | fveq2d 6778 |
. . . . 5
⊢ (𝑤 = 𝑊 → (UnifOn‘(Base‘𝑤)) = (UnifOn‘𝐵)) |
27 | 23, 26 | eleq12d 2833 |
. . . 4
⊢ (𝑤 = 𝑊 → ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ↔ 𝑈 ∈ (UnifOn‘𝐵))) |
28 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) |
29 | | isusp.3 |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝑊) |
30 | 28, 29 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽) |
31 | 23 | fveq2d 6778 |
. . . . 5
⊢ (𝑤 = 𝑊 → (unifTop‘(UnifSt‘𝑤)) = (unifTop‘𝑈)) |
32 | 30, 31 | eqeq12d 2754 |
. . . 4
⊢ (𝑤 = 𝑊 → ((TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)) ↔ 𝐽 = (unifTop‘𝑈))) |
33 | 27, 32 | anbi12d 631 |
. . 3
⊢ (𝑤 = 𝑊 → (((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) =
(unifTop‘(UnifSt‘𝑤))) ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))) |
34 | | df-usp 23409 |
. . 3
⊢ UnifSp =
{𝑤 ∣
((UnifSt‘𝑤) ∈
(UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)))} |
35 | 33, 34 | elab2g 3611 |
. 2
⊢ (𝑊 ∈ V → (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))) |
36 | 1, 21, 35 | pm5.21nii 380 |
1
⊢ (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))) |