MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusp Structured version   Visualization version   GIF version

Theorem isusp 22867
Description: The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
isusp.1 𝐵 = (Base‘𝑊)
isusp.2 𝑈 = (UnifSt‘𝑊)
isusp.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
isusp (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))

Proof of Theorem isusp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝑊 ∈ UnifSp → 𝑊 ∈ V)
2 0nep0 5223 . . . . 5 ∅ ≠ {∅}
3 isusp.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 fvprc 6638 . . . . . . . . . . . 12 𝑊 ∈ V → (Base‘𝑊) = ∅)
53, 4syl5eq 2845 . . . . . . . . . . 11 𝑊 ∈ V → 𝐵 = ∅)
65fveq2d 6649 . . . . . . . . . 10 𝑊 ∈ V → (UnifOn‘𝐵) = (UnifOn‘∅))
7 ust0 22825 . . . . . . . . . 10 (UnifOn‘∅) = {{∅}}
86, 7eqtrdi 2849 . . . . . . . . 9 𝑊 ∈ V → (UnifOn‘𝐵) = {{∅}})
98eleq2d 2875 . . . . . . . 8 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 ∈ {{∅}}))
10 isusp.2 . . . . . . . . . 10 𝑈 = (UnifSt‘𝑊)
1110fvexi 6659 . . . . . . . . 9 𝑈 ∈ V
1211elsn 4540 . . . . . . . 8 (𝑈 ∈ {{∅}} ↔ 𝑈 = {∅})
139, 12syl6bb 290 . . . . . . 7 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 = {∅}))
14 fvprc 6638 . . . . . . . . 9 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1510, 14syl5eq 2845 . . . . . . . 8 𝑊 ∈ V → 𝑈 = ∅)
1615eqeq1d 2800 . . . . . . 7 𝑊 ∈ V → (𝑈 = {∅} ↔ ∅ = {∅}))
1713, 16bitrd 282 . . . . . 6 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ = {∅}))
1817necon3bbid 3024 . . . . 5 𝑊 ∈ V → (¬ 𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ ≠ {∅}))
192, 18mpbiri 261 . . . 4 𝑊 ∈ V → ¬ 𝑈 ∈ (UnifOn‘𝐵))
2019con4i 114 . . 3 (𝑈 ∈ (UnifOn‘𝐵) → 𝑊 ∈ V)
2120adantr 484 . 2 ((𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)) → 𝑊 ∈ V)
22 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → (UnifSt‘𝑤) = (UnifSt‘𝑊))
2322, 10eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → (UnifSt‘𝑤) = 𝑈)
24 fveq2 6645 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
2524, 3eqtr4di 2851 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
2625fveq2d 6649 . . . . 5 (𝑤 = 𝑊 → (UnifOn‘(Base‘𝑤)) = (UnifOn‘𝐵))
2723, 26eleq12d 2884 . . . 4 (𝑤 = 𝑊 → ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ↔ 𝑈 ∈ (UnifOn‘𝐵)))
28 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
29 isusp.3 . . . . . 6 𝐽 = (TopOpen‘𝑊)
3028, 29eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
3123fveq2d 6649 . . . . 5 (𝑤 = 𝑊 → (unifTop‘(UnifSt‘𝑤)) = (unifTop‘𝑈))
3230, 31eqeq12d 2814 . . . 4 (𝑤 = 𝑊 → ((TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)) ↔ 𝐽 = (unifTop‘𝑈)))
3327, 32anbi12d 633 . . 3 (𝑤 = 𝑊 → (((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤))) ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
34 df-usp 22863 . . 3 UnifSp = {𝑤 ∣ ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)))}
3533, 34elab2g 3616 . 2 (𝑊 ∈ V → (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
361, 21, 35pm5.21nii 383 1 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  c0 4243  {csn 4525  cfv 6324  Basecbs 16475  TopOpenctopn 16687  UnifOncust 22805  unifTopcutop 22836  UnifStcuss 22859  UnifSpcusp 22860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-ust 22806  df-usp 22863
This theorem is referenced by:  ressust  22870  ressusp  22871  tususp  22878  uspreg  22880  ucncn  22891  neipcfilu  22902  ucnextcn  22910  xmsusp  23176
  Copyright terms: Public domain W3C validator