MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusp Structured version   Visualization version   GIF version

Theorem isusp 24177
Description: The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
isusp.1 𝐵 = (Base‘𝑊)
isusp.2 𝑈 = (UnifSt‘𝑊)
isusp.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
isusp (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))

Proof of Theorem isusp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝑊 ∈ UnifSp → 𝑊 ∈ V)
2 0nep0 5296 . . . . 5 ∅ ≠ {∅}
3 isusp.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 fvprc 6814 . . . . . . . . . . . 12 𝑊 ∈ V → (Base‘𝑊) = ∅)
53, 4eqtrid 2778 . . . . . . . . . . 11 𝑊 ∈ V → 𝐵 = ∅)
65fveq2d 6826 . . . . . . . . . 10 𝑊 ∈ V → (UnifOn‘𝐵) = (UnifOn‘∅))
7 ust0 24136 . . . . . . . . . 10 (UnifOn‘∅) = {{∅}}
86, 7eqtrdi 2782 . . . . . . . . 9 𝑊 ∈ V → (UnifOn‘𝐵) = {{∅}})
98eleq2d 2817 . . . . . . . 8 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 ∈ {{∅}}))
10 isusp.2 . . . . . . . . . 10 𝑈 = (UnifSt‘𝑊)
1110fvexi 6836 . . . . . . . . 9 𝑈 ∈ V
1211elsn 4591 . . . . . . . 8 (𝑈 ∈ {{∅}} ↔ 𝑈 = {∅})
139, 12bitrdi 287 . . . . . . 7 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 = {∅}))
14 fvprc 6814 . . . . . . . . 9 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1510, 14eqtrid 2778 . . . . . . . 8 𝑊 ∈ V → 𝑈 = ∅)
1615eqeq1d 2733 . . . . . . 7 𝑊 ∈ V → (𝑈 = {∅} ↔ ∅ = {∅}))
1713, 16bitrd 279 . . . . . 6 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ = {∅}))
1817necon3bbid 2965 . . . . 5 𝑊 ∈ V → (¬ 𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ ≠ {∅}))
192, 18mpbiri 258 . . . 4 𝑊 ∈ V → ¬ 𝑈 ∈ (UnifOn‘𝐵))
2019con4i 114 . . 3 (𝑈 ∈ (UnifOn‘𝐵) → 𝑊 ∈ V)
2120adantr 480 . 2 ((𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)) → 𝑊 ∈ V)
22 fveq2 6822 . . . . . 6 (𝑤 = 𝑊 → (UnifSt‘𝑤) = (UnifSt‘𝑊))
2322, 10eqtr4di 2784 . . . . 5 (𝑤 = 𝑊 → (UnifSt‘𝑤) = 𝑈)
24 fveq2 6822 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
2524, 3eqtr4di 2784 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
2625fveq2d 6826 . . . . 5 (𝑤 = 𝑊 → (UnifOn‘(Base‘𝑤)) = (UnifOn‘𝐵))
2723, 26eleq12d 2825 . . . 4 (𝑤 = 𝑊 → ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ↔ 𝑈 ∈ (UnifOn‘𝐵)))
28 fveq2 6822 . . . . . 6 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
29 isusp.3 . . . . . 6 𝐽 = (TopOpen‘𝑊)
3028, 29eqtr4di 2784 . . . . 5 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
3123fveq2d 6826 . . . . 5 (𝑤 = 𝑊 → (unifTop‘(UnifSt‘𝑤)) = (unifTop‘𝑈))
3230, 31eqeq12d 2747 . . . 4 (𝑤 = 𝑊 → ((TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)) ↔ 𝐽 = (unifTop‘𝑈)))
3327, 32anbi12d 632 . . 3 (𝑤 = 𝑊 → (((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤))) ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
34 df-usp 24173 . . 3 UnifSp = {𝑤 ∣ ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)))}
3533, 34elab2g 3636 . 2 (𝑊 ∈ V → (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
361, 21, 35pm5.21nii 378 1 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4283  {csn 4576  cfv 6481  Basecbs 17120  TopOpenctopn 17325  UnifOncust 24116  unifTopcutop 24146  UnifStcuss 24169  UnifSpcusp 24170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ust 24117  df-usp 24173
This theorem is referenced by:  ressust  24179  ressusp  24180  tususp  24187  uspreg  24189  ucncn  24200  neipcfilu  24211  ucnextcn  24219  xmsusp  24485
  Copyright terms: Public domain W3C validator