MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusp Structured version   Visualization version   GIF version

Theorem isusp 23321
Description: The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
isusp.1 𝐵 = (Base‘𝑊)
isusp.2 𝑈 = (UnifSt‘𝑊)
isusp.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
isusp (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))

Proof of Theorem isusp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝑊 ∈ UnifSp → 𝑊 ∈ V)
2 0nep0 5275 . . . . 5 ∅ ≠ {∅}
3 isusp.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 fvprc 6748 . . . . . . . . . . . 12 𝑊 ∈ V → (Base‘𝑊) = ∅)
53, 4eqtrid 2790 . . . . . . . . . . 11 𝑊 ∈ V → 𝐵 = ∅)
65fveq2d 6760 . . . . . . . . . 10 𝑊 ∈ V → (UnifOn‘𝐵) = (UnifOn‘∅))
7 ust0 23279 . . . . . . . . . 10 (UnifOn‘∅) = {{∅}}
86, 7eqtrdi 2795 . . . . . . . . 9 𝑊 ∈ V → (UnifOn‘𝐵) = {{∅}})
98eleq2d 2824 . . . . . . . 8 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 ∈ {{∅}}))
10 isusp.2 . . . . . . . . . 10 𝑈 = (UnifSt‘𝑊)
1110fvexi 6770 . . . . . . . . 9 𝑈 ∈ V
1211elsn 4573 . . . . . . . 8 (𝑈 ∈ {{∅}} ↔ 𝑈 = {∅})
139, 12bitrdi 286 . . . . . . 7 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ 𝑈 = {∅}))
14 fvprc 6748 . . . . . . . . 9 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1510, 14eqtrid 2790 . . . . . . . 8 𝑊 ∈ V → 𝑈 = ∅)
1615eqeq1d 2740 . . . . . . 7 𝑊 ∈ V → (𝑈 = {∅} ↔ ∅ = {∅}))
1713, 16bitrd 278 . . . . . 6 𝑊 ∈ V → (𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ = {∅}))
1817necon3bbid 2980 . . . . 5 𝑊 ∈ V → (¬ 𝑈 ∈ (UnifOn‘𝐵) ↔ ∅ ≠ {∅}))
192, 18mpbiri 257 . . . 4 𝑊 ∈ V → ¬ 𝑈 ∈ (UnifOn‘𝐵))
2019con4i 114 . . 3 (𝑈 ∈ (UnifOn‘𝐵) → 𝑊 ∈ V)
2120adantr 480 . 2 ((𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)) → 𝑊 ∈ V)
22 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (UnifSt‘𝑤) = (UnifSt‘𝑊))
2322, 10eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (UnifSt‘𝑤) = 𝑈)
24 fveq2 6756 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
2524, 3eqtr4di 2797 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
2625fveq2d 6760 . . . . 5 (𝑤 = 𝑊 → (UnifOn‘(Base‘𝑤)) = (UnifOn‘𝐵))
2723, 26eleq12d 2833 . . . 4 (𝑤 = 𝑊 → ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ↔ 𝑈 ∈ (UnifOn‘𝐵)))
28 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
29 isusp.3 . . . . . 6 𝐽 = (TopOpen‘𝑊)
3028, 29eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
3123fveq2d 6760 . . . . 5 (𝑤 = 𝑊 → (unifTop‘(UnifSt‘𝑤)) = (unifTop‘𝑈))
3230, 31eqeq12d 2754 . . . 4 (𝑤 = 𝑊 → ((TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)) ↔ 𝐽 = (unifTop‘𝑈)))
3327, 32anbi12d 630 . . 3 (𝑤 = 𝑊 → (((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤))) ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
34 df-usp 23317 . . 3 UnifSp = {𝑤 ∣ ((UnifSt‘𝑤) ∈ (UnifOn‘(Base‘𝑤)) ∧ (TopOpen‘𝑤) = (unifTop‘(UnifSt‘𝑤)))}
3533, 34elab2g 3604 . 2 (𝑊 ∈ V → (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))))
361, 21, 35pm5.21nii 379 1 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  {csn 4558  cfv 6418  Basecbs 16840  TopOpenctopn 17049  UnifOncust 23259  unifTopcutop 23290  UnifStcuss 23313  UnifSpcusp 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ust 23260  df-usp 23317
This theorem is referenced by:  ressust  23323  ressusp  23324  tususp  23332  uspreg  23334  ucncn  23345  neipcfilu  23356  ucnextcn  23364  xmsusp  23631
  Copyright terms: Public domain W3C validator