MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwpc Structured version   Visualization version   GIF version

Theorem vdwpc 16951
Description: The predicate " The coloring 𝐹 contains a polychromatic 𝑀-tuple of AP's of length 𝐾". A polychromatic 𝑀-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwpc.4 (𝜑𝑀 ∈ ℕ)
vdwpc.5 𝐽 = (1...𝑀)
Assertion
Ref Expression
vdwpc (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Distinct variable groups:   𝑎,𝑑,𝑖,𝐹   𝐾,𝑎,𝑑,𝑖   𝐽,𝑑,𝑖   𝑀,𝑎,𝑑,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑑)   𝑅(𝑖,𝑎,𝑑)   𝐽(𝑎)   𝑋(𝑖,𝑎,𝑑)

Proof of Theorem vdwpc
Dummy variables 𝑓 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwpc.4 . 2 (𝜑𝑀 ∈ ℕ)
2 vdwmc.2 . 2 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
4 vdwmc.1 . . 3 𝑋 ∈ V
5 fex 7200 . . 3 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
63, 4, 5sylancl 586 . 2 (𝜑𝐹 ∈ V)
7 df-br 5108 . . . 4 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP )
8 df-vdwpc 16941 . . . . 5 PolyAP = {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)}
98eleq2i 2820 . . . 4 (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
107, 9bitri 275 . . 3 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
11 simp1 1136 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑚 = 𝑀)
1211oveq2d 7403 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = (1...𝑀))
13 vdwpc.5 . . . . . . . 8 𝐽 = (1...𝑀)
1412, 13eqtr4di 2782 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = 𝐽)
1514oveq2d 7403 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (ℕ ↑m (1...𝑚)) = (ℕ ↑m 𝐽))
16 simp2 1137 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑘 = 𝐾)
1716fveq2d 6862 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (AP‘𝑘) = (AP‘𝐾))
1817oveqd 7404 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) = ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
19 simp3 1138 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2019cnveqd 5839 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2119fveq1d 6860 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓‘(𝑎 + (𝑑𝑖))) = (𝐹‘(𝑎 + (𝑑𝑖))))
2221sneqd 4601 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → {(𝑓‘(𝑎 + (𝑑𝑖)))} = {(𝐹‘(𝑎 + (𝑑𝑖)))})
2320, 22imaeq12d 6032 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}))
2418, 23sseq12d 3980 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2514, 24raleqbidv 3319 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2614, 21mpteq12dv 5194 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2726rneqd 5902 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2827fveq2d 6862 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))))
2928, 11eqeq12d 2745 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚 ↔ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀))
3025, 29anbi12d 632 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ (∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3115, 30rexeqbidv 3320 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3231rexbidv 3157 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3332eloprabga 7498 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)} ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3410, 33bitrid 283 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
351, 2, 6, 34syl3anc 1373 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  {coprab 7388  m cmap 8799  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  ...cfz 13468  chash 14295  APcvdwa 16936   PolyAP cvdwp 16938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-vdwpc 16941
This theorem is referenced by:  vdwlem6  16957  vdwlem7  16958  vdwlem8  16959  vdwlem11  16962
  Copyright terms: Public domain W3C validator