Step | Hyp | Ref
| Expression |
1 | | vdwpc.4 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | vdwmc.2 |
. 2
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
3 | | vdwmc.3 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑅) |
4 | | vdwmc.1 |
. . 3
⊢ 𝑋 ∈ V |
5 | | fex 7084 |
. . 3
⊢ ((𝐹:𝑋⟶𝑅 ∧ 𝑋 ∈ V) → 𝐹 ∈ V) |
6 | 3, 4, 5 | sylancl 585 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
7 | | df-br 5071 |
. . . 4
⊢
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ 〈〈𝑀, 𝐾〉, 𝐹〉 ∈ PolyAP ) |
8 | | df-vdwpc 16599 |
. . . . 5
⊢ PolyAP =
{〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |
9 | 8 | eleq2i 2830 |
. . . 4
⊢
(〈〈𝑀,
𝐾〉, 𝐹〉 ∈ PolyAP ↔
〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)}) |
10 | 7, 9 | bitri 274 |
. . 3
⊢
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ 〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)}) |
11 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑚 = 𝑀) |
12 | 11 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (1...𝑚) = (1...𝑀)) |
13 | | vdwpc.5 |
. . . . . . . 8
⊢ 𝐽 = (1...𝑀) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (1...𝑚) = 𝐽) |
15 | 14 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (ℕ ↑m
(1...𝑚)) = (ℕ
↑m 𝐽)) |
16 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑘 = 𝐾) |
17 | 16 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (AP‘𝑘) = (AP‘𝐾)) |
18 | 17 | oveqd 7272 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) = ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
19 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
20 | 19 | cnveqd 5773 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ◡𝑓 = ◡𝐹) |
21 | 19 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (𝑓‘(𝑎 + (𝑑‘𝑖))) = (𝐹‘(𝑎 + (𝑑‘𝑖)))) |
22 | 21 | sneqd 4570 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → {(𝑓‘(𝑎 + (𝑑‘𝑖)))} = {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) |
23 | 20, 22 | imaeq12d 5959 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) = (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))})) |
24 | 18, 23 | sseq12d 3950 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ↔ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}))) |
25 | 14, 24 | raleqbidv 3327 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ↔ ∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}))) |
26 | 14, 21 | mpteq12dv 5161 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) |
27 | 26 | rneqd 5836 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) |
28 | 27 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖)))))) |
29 | 28, 11 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚 ↔ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀)) |
30 | 25, 29 | anbi12d 630 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ (∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
31 | 15, 30 | rexeqbidv 3328 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
32 | 31 | rexbidv 3225 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
33 | 32 | eloprabga 7360 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0
∧ 𝐹 ∈ V) →
(〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
34 | 10, 33 | syl5bb 282 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0
∧ 𝐹 ∈ V) →
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
35 | 1, 2, 6, 34 | syl3anc 1369 |
1
⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |