| Step | Hyp | Ref
| Expression |
| 1 | | vdwpc.4 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | | vdwmc.2 |
. 2
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 3 | | vdwmc.3 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑅) |
| 4 | | vdwmc.1 |
. . 3
⊢ 𝑋 ∈ V |
| 5 | | fex 7246 |
. . 3
⊢ ((𝐹:𝑋⟶𝑅 ∧ 𝑋 ∈ V) → 𝐹 ∈ V) |
| 6 | 3, 4, 5 | sylancl 586 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 7 | | df-br 5144 |
. . . 4
⊢
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ 〈〈𝑀, 𝐾〉, 𝐹〉 ∈ PolyAP ) |
| 8 | | df-vdwpc 17008 |
. . . . 5
⊢ PolyAP =
{〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |
| 9 | 8 | eleq2i 2833 |
. . . 4
⊢
(〈〈𝑀,
𝐾〉, 𝐹〉 ∈ PolyAP ↔
〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)}) |
| 10 | 7, 9 | bitri 275 |
. . 3
⊢
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ 〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)}) |
| 11 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑚 = 𝑀) |
| 12 | 11 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (1...𝑚) = (1...𝑀)) |
| 13 | | vdwpc.5 |
. . . . . . . 8
⊢ 𝐽 = (1...𝑀) |
| 14 | 12, 13 | eqtr4di 2795 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (1...𝑚) = 𝐽) |
| 15 | 14 | oveq2d 7447 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (ℕ ↑m
(1...𝑚)) = (ℕ
↑m 𝐽)) |
| 16 | | simp2 1138 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑘 = 𝐾) |
| 17 | 16 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (AP‘𝑘) = (AP‘𝐾)) |
| 18 | 17 | oveqd 7448 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) = ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 19 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
| 20 | 19 | cnveqd 5886 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ◡𝑓 = ◡𝐹) |
| 21 | 19 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (𝑓‘(𝑎 + (𝑑‘𝑖))) = (𝐹‘(𝑎 + (𝑑‘𝑖)))) |
| 22 | 21 | sneqd 4638 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → {(𝑓‘(𝑎 + (𝑑‘𝑖)))} = {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) |
| 23 | 20, 22 | imaeq12d 6079 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) = (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))})) |
| 24 | 18, 23 | sseq12d 4017 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ↔ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}))) |
| 25 | 14, 24 | raleqbidv 3346 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ↔ ∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}))) |
| 26 | 14, 21 | mpteq12dv 5233 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) |
| 27 | 26 | rneqd 5949 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) |
| 28 | 27 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖)))))) |
| 29 | 28, 11 | eqeq12d 2753 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚 ↔ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀)) |
| 30 | 25, 29 | anbi12d 632 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ (∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
| 31 | 15, 30 | rexeqbidv 3347 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
| 32 | 31 | rexbidv 3179 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
| 33 | 32 | eloprabga 7542 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0
∧ 𝐹 ∈ V) →
(〈〈𝑀, 𝐾〉, 𝐹〉 ∈ {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
| 34 | 10, 33 | bitrid 283 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0
∧ 𝐹 ∈ V) →
(〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |
| 35 | 1, 2, 6, 34 | syl3anc 1373 |
1
⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) |