MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwpc Structured version   Visualization version   GIF version

Theorem vdwpc 16910
Description: The predicate " The coloring 𝐹 contains a polychromatic 𝑀-tuple of AP's of length 𝐾". A polychromatic 𝑀-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwpc.4 (𝜑𝑀 ∈ ℕ)
vdwpc.5 𝐽 = (1...𝑀)
Assertion
Ref Expression
vdwpc (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Distinct variable groups:   𝑎,𝑑,𝑖,𝐹   𝐾,𝑎,𝑑,𝑖   𝐽,𝑑,𝑖   𝑀,𝑎,𝑑,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑑)   𝑅(𝑖,𝑎,𝑑)   𝐽(𝑎)   𝑋(𝑖,𝑎,𝑑)

Proof of Theorem vdwpc
Dummy variables 𝑓 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwpc.4 . 2 (𝜑𝑀 ∈ ℕ)
2 vdwmc.2 . 2 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
4 vdwmc.1 . . 3 𝑋 ∈ V
5 fex 7166 . . 3 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
63, 4, 5sylancl 586 . 2 (𝜑𝐹 ∈ V)
7 df-br 5096 . . . 4 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP )
8 df-vdwpc 16900 . . . . 5 PolyAP = {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)}
98eleq2i 2820 . . . 4 (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
107, 9bitri 275 . . 3 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
11 simp1 1136 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑚 = 𝑀)
1211oveq2d 7369 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = (1...𝑀))
13 vdwpc.5 . . . . . . . 8 𝐽 = (1...𝑀)
1412, 13eqtr4di 2782 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = 𝐽)
1514oveq2d 7369 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (ℕ ↑m (1...𝑚)) = (ℕ ↑m 𝐽))
16 simp2 1137 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑘 = 𝐾)
1716fveq2d 6830 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (AP‘𝑘) = (AP‘𝐾))
1817oveqd 7370 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) = ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
19 simp3 1138 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2019cnveqd 5822 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2119fveq1d 6828 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓‘(𝑎 + (𝑑𝑖))) = (𝐹‘(𝑎 + (𝑑𝑖))))
2221sneqd 4591 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → {(𝑓‘(𝑎 + (𝑑𝑖)))} = {(𝐹‘(𝑎 + (𝑑𝑖)))})
2320, 22imaeq12d 6016 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}))
2418, 23sseq12d 3971 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2514, 24raleqbidv 3310 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2614, 21mpteq12dv 5182 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2726rneqd 5884 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2827fveq2d 6830 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))))
2928, 11eqeq12d 2745 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚 ↔ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀))
3025, 29anbi12d 632 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ (∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3115, 30rexeqbidv 3311 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3231rexbidv 3153 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3332eloprabga 7462 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)} ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3410, 33bitrid 283 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
351, 2, 6, 34syl3anc 1373 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905  {csn 4579  cop 4585   class class class wbr 5095  cmpt 5176  ccnv 5622  ran crn 5624  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  {coprab 7354  m cmap 8760  1c1 11029   + caddc 11031  cn 12146  0cn0 12402  ...cfz 13428  chash 14255  APcvdwa 16895   PolyAP cvdwp 16897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-vdwpc 16900
This theorem is referenced by:  vdwlem6  16916  vdwlem7  16917  vdwlem8  16918  vdwlem11  16921
  Copyright terms: Public domain W3C validator