MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapfval Structured version   Visualization version   GIF version

Theorem vdwapfval 16948
Description: Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapfval (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Distinct variable group:   𝑎,𝑑,𝑚,𝐾

Proof of Theorem vdwapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑘 = 𝐾)
21oveq1d 7404 . . . . . 6 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑘 − 1) = (𝐾 − 1))
32oveq2d 7405 . . . . 5 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (0...(𝑘 − 1)) = (0...(𝐾 − 1)))
43mpteq1d 5199 . . . 4 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
54rneqd 5904 . . 3 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
65mpoeq3dva 7468 . 2 (𝑘 = 𝐾 → (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
7 df-vdwap 16945 . 2 AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
8 nnex 12193 . . 3 ℕ ∈ V
98, 8mpoex 8060 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) ∈ V
106, 7, 9fvmpt 6970 1 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cmpt 5190  ran crn 5641  cfv 6513  (class class class)co 7389  cmpo 7391  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  cn 12187  0cn0 12448  ...cfz 13474  APcvdwa 16942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-1cn 11132  ax-addcl 11134
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-nn 12188  df-vdwap 16945
This theorem is referenced by:  vdwapf  16949  vdwapval  16950
  Copyright terms: Public domain W3C validator