Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapfval Structured version   Visualization version   GIF version

Theorem vdwapfval 16294
 Description: Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapfval (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Distinct variable group:   𝑎,𝑑,𝑚,𝐾

Proof of Theorem vdwapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . . . 7 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑘 = 𝐾)
21oveq1d 7153 . . . . . 6 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑘 − 1) = (𝐾 − 1))
32oveq2d 7154 . . . . 5 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (0...(𝑘 − 1)) = (0...(𝐾 − 1)))
43mpteq1d 5136 . . . 4 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
54rneqd 5789 . . 3 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
65mpoeq3dva 7213 . 2 (𝑘 = 𝐾 → (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
7 df-vdwap 16291 . 2 AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
8 nnex 11629 . . 3 ℕ ∈ V
98, 8mpoex 7760 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) ∈ V
106, 7, 9fvmpt 6749 1 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ↦ cmpt 5127  ran crn 5537  ‘cfv 6336  (class class class)co 7138   ∈ cmpo 7140  0cc0 10522  1c1 10523   + caddc 10525   · cmul 10527   − cmin 10855  ℕcn 11623  ℕ0cn0 11883  ...cfz 12883  APcvdwa 16288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-1cn 10580  ax-addcl 10582 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11624  df-vdwap 16291 This theorem is referenced by:  vdwapf  16295  vdwapval  16296
 Copyright terms: Public domain W3C validator