MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapfval Structured version   Visualization version   GIF version

Theorem vdwapfval 16307
Description: Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapfval (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Distinct variable group:   𝑎,𝑑,𝑚,𝐾

Proof of Theorem vdwapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . . . 7 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑘 = 𝐾)
21oveq1d 7171 . . . . . 6 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑘 − 1) = (𝐾 − 1))
32oveq2d 7172 . . . . 5 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (0...(𝑘 − 1)) = (0...(𝐾 − 1)))
43mpteq1d 5155 . . . 4 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
54rneqd 5808 . . 3 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
65mpoeq3dva 7231 . 2 (𝑘 = 𝐾 → (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
7 df-vdwap 16304 . 2 AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
8 nnex 11644 . . 3 ℕ ∈ V
98, 8mpoex 7777 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) ∈ V
106, 7, 9fvmpt 6768 1 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cmpt 5146  ran crn 5556  cfv 6355  (class class class)co 7156  cmpo 7158  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  cn 11638  0cn0 11898  ...cfz 12893  APcvdwa 16301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-vdwap 16304
This theorem is referenced by:  vdwapf  16308  vdwapval  16309
  Copyright terms: Public domain W3C validator