MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wdom Structured version   Visualization version   GIF version

Definition df-wdom 9011
Description: A set is weakly dominated by a "larger" set iff the "larger" set can be mapped onto the "smaller" set or the smaller set is empty; equivalently if the smaller set can be placed into bijection with some partition of the larger set. When choice is assumed (as fodom 9932), this coincides with the 1-1 definition df-dom 8499; however, it is not known whether this is a choice-equivalent or a strictly weaker form. Some discussion of this question can be found at http://boolesrings.org/asafk/2014/on-the-partition-principle/ 8499. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
df-wdom * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-wdom
StepHypRef Expression
1 cwdom 9009 . 2 class *
2 vx . . . . . 6 setvar 𝑥
32cv 1527 . . . . 5 class 𝑥
4 c0 4288 . . . . 5 class
53, 4wceq 1528 . . . 4 wff 𝑥 = ∅
6 vy . . . . . . 7 setvar 𝑦
76cv 1527 . . . . . 6 class 𝑦
8 vz . . . . . . 7 setvar 𝑧
98cv 1527 . . . . . 6 class 𝑧
107, 3, 9wfo 6346 . . . . 5 wff 𝑧:𝑦onto𝑥
1110, 8wex 1771 . . . 4 wff 𝑧 𝑧:𝑦onto𝑥
125, 11wo 841 . . 3 wff (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)
1312, 2, 6copab 5119 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
141, 13wceq 1528 1 wff * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
Colors of variables: wff setvar class
This definition is referenced by:  relwdom  9018  brwdom  9019
  Copyright terms: Public domain W3C validator