| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| relwdom | ⊢ Rel ≼* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wdom 9494 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel ≼* |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 ∅c0 4292 Rel wrel 5636 –onto→wfo 6497 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-wdom 9494 |
| This theorem is referenced by: brwdom 9496 brwdomi 9497 brwdomn0 9498 wdomtr 9504 wdompwdom 9507 canthwdom 9508 brwdom3i 9512 unwdomg 9513 xpwdomg 9514 wdomfil 9990 isfin32i 10294 hsmexlem1 10355 hsmexlem3 10357 wdomac 10456 |
| Copyright terms: Public domain | W3C validator |