![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version |
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
relwdom | ⊢ Rel ≼* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wdom 9634 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ≼* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1537 ∃wex 1777 ∅c0 4352 Rel wrel 5705 –onto→wfo 6571 ≼* cwdom 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-wdom 9634 |
This theorem is referenced by: brwdom 9636 brwdomi 9637 brwdomn0 9638 wdomtr 9644 wdompwdom 9647 canthwdom 9648 brwdom3i 9652 unwdomg 9653 xpwdomg 9654 wdomfil 10130 isfin32i 10434 hsmexlem1 10495 hsmexlem3 10497 wdomac 10596 |
Copyright terms: Public domain | W3C validator |