| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| relwdom | ⊢ Rel ≼* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wdom 9518 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ≼* |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 ∅c0 4296 Rel wrel 5643 –onto→wfo 6509 ≼* cwdom 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-wdom 9518 |
| This theorem is referenced by: brwdom 9520 brwdomi 9521 brwdomn0 9522 wdomtr 9528 wdompwdom 9531 canthwdom 9532 brwdom3i 9536 unwdomg 9537 xpwdomg 9538 wdomfil 10014 isfin32i 10318 hsmexlem1 10379 hsmexlem3 10381 wdomac 10480 |
| Copyright terms: Public domain | W3C validator |