![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version |
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
relwdom | ⊢ Rel ≼* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wdom 9602 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
2 | 1 | relopabiv 5832 | 1 ⊢ Rel ≼* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1536 ∃wex 1775 ∅c0 4338 Rel wrel 5693 –onto→wfo 6560 ≼* cwdom 9601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-wdom 9602 |
This theorem is referenced by: brwdom 9604 brwdomi 9605 brwdomn0 9606 wdomtr 9612 wdompwdom 9615 canthwdom 9616 brwdom3i 9620 unwdomg 9621 xpwdomg 9622 wdomfil 10098 isfin32i 10402 hsmexlem1 10463 hsmexlem3 10465 wdomac 10564 |
Copyright terms: Public domain | W3C validator |