Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version |
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
relwdom | ⊢ Rel ≼* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wdom 9422 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
2 | 1 | relopabiv 5762 | 1 ⊢ Rel ≼* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∃wex 1780 ∅c0 4269 Rel wrel 5625 –onto→wfo 6477 ≼* cwdom 9421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-opab 5155 df-xp 5626 df-rel 5627 df-wdom 9422 |
This theorem is referenced by: brwdom 9424 brwdomi 9425 brwdomn0 9426 wdomtr 9432 wdompwdom 9435 canthwdom 9436 brwdom3i 9440 unwdomg 9441 xpwdomg 9442 wdomfil 9918 isfin32i 10222 hsmexlem1 10283 hsmexlem3 10285 wdomac 10384 |
Copyright terms: Public domain | W3C validator |