![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version |
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
relwdom | ⊢ Rel ≼* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wdom 8755 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
2 | 1 | relopabi 5493 | 1 ⊢ Rel ≼* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 836 = wceq 1601 ∃wex 1823 ∅c0 4141 Rel wrel 5362 –onto→wfo 6135 ≼* cwdom 8753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-opab 4951 df-xp 5363 df-rel 5364 df-wdom 8755 |
This theorem is referenced by: brwdom 8763 brwdomi 8764 brwdomn0 8765 wdomtr 8771 wdompwdom 8774 canthwdom 8775 brwdom3i 8779 unwdomg 8780 xpwdomg 8781 wdomfil 9219 isfin32i 9524 hsmexlem1 9585 hsmexlem3 9587 wdomac 9686 |
Copyright terms: Public domain | W3C validator |