Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version |
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
relwdom | ⊢ Rel ≼* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wdom 9254 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ≼* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 ∃wex 1783 ∅c0 4253 Rel wrel 5585 –onto→wfo 6416 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-wdom 9254 |
This theorem is referenced by: brwdom 9256 brwdomi 9257 brwdomn0 9258 wdomtr 9264 wdompwdom 9267 canthwdom 9268 brwdom3i 9272 unwdomg 9273 xpwdomg 9274 wdomfil 9748 isfin32i 10052 hsmexlem1 10113 hsmexlem3 10115 wdomac 10214 |
Copyright terms: Public domain | W3C validator |