| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| relwdom | ⊢ Rel ≼* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wdom 9451 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel ≼* |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∃wex 1780 ∅c0 4280 Rel wrel 5619 –onto→wfo 6479 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-wdom 9451 |
| This theorem is referenced by: brwdom 9453 brwdomi 9454 brwdomn0 9455 wdomtr 9461 wdompwdom 9464 canthwdom 9465 brwdom3i 9469 unwdomg 9470 xpwdomg 9471 wdomfil 9952 isfin32i 10256 hsmexlem1 10317 hsmexlem3 10319 wdomac 10418 |
| Copyright terms: Public domain | W3C validator |