MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Structured version   Visualization version   GIF version

Theorem relwdom 9561
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom Rel ≼*

Proof of Theorem relwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 9560 . 2 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
21relopabiv 5821 1 Rel ≼*
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1542  wex 1782  c0 4323  Rel wrel 5682  ontowfo 6542  * cwdom 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684  df-wdom 9560
This theorem is referenced by:  brwdom  9562  brwdomi  9563  brwdomn0  9564  wdomtr  9570  wdompwdom  9573  canthwdom  9574  brwdom3i  9578  unwdomg  9579  xpwdomg  9580  wdomfil  10056  isfin32i  10360  hsmexlem1  10421  hsmexlem3  10423  wdomac  10522
  Copyright terms: Public domain W3C validator