| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| relwdom | ⊢ Rel ≼* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wdom 9457 | . 2 ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel ≼* |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 ∅c0 4284 Rel wrel 5624 –onto→wfo 6480 ≼* cwdom 9456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-wdom 9457 |
| This theorem is referenced by: brwdom 9459 brwdomi 9460 brwdomn0 9461 wdomtr 9467 wdompwdom 9470 canthwdom 9471 brwdom3i 9475 unwdomg 9476 xpwdomg 9477 wdomfil 9955 isfin32i 10259 hsmexlem1 10320 hsmexlem3 10322 wdomac 10421 |
| Copyright terms: Public domain | W3C validator |