MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Structured version   Visualization version   GIF version

Theorem relwdom 9578
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom Rel ≼*

Proof of Theorem relwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 9577 . 2 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
21relopabiv 5799 1 Rel ≼*
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wex 1779  c0 4308  Rel wrel 5659  ontowfo 6528  * cwdom 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-opab 5182  df-xp 5660  df-rel 5661  df-wdom 9577
This theorem is referenced by:  brwdom  9579  brwdomi  9580  brwdomn0  9581  wdomtr  9587  wdompwdom  9590  canthwdom  9591  brwdom3i  9595  unwdomg  9596  xpwdomg  9597  wdomfil  10073  isfin32i  10377  hsmexlem1  10438  hsmexlem3  10440  wdomac  10539
  Copyright terms: Public domain W3C validator