MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Structured version   Visualization version   GIF version

Theorem relwdom 9423
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom Rel ≼*

Proof of Theorem relwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 9422 . 2 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
21relopabiv 5762 1 Rel ≼*
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1540  wex 1780  c0 4269  Rel wrel 5625  ontowfo 6477  * cwdom 9421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3905  df-ss 3915  df-opab 5155  df-xp 5626  df-rel 5627  df-wdom 9422
This theorem is referenced by:  brwdom  9424  brwdomi  9425  brwdomn0  9426  wdomtr  9432  wdompwdom  9435  canthwdom  9436  brwdom3i  9440  unwdomg  9441  xpwdomg  9442  wdomfil  9918  isfin32i  10222  hsmexlem1  10283  hsmexlem3  10285  wdomac  10384
  Copyright terms: Public domain W3C validator