MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Structured version   Visualization version   GIF version

Theorem relwdom 9635
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom Rel ≼*

Proof of Theorem relwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 9634 . 2 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
21relopabiv 5844 1 Rel ≼*
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1537  wex 1777  c0 4352  Rel wrel 5705  ontowfo 6571  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707  df-wdom 9634
This theorem is referenced by:  brwdom  9636  brwdomi  9637  brwdomn0  9638  wdomtr  9644  wdompwdom  9647  canthwdom  9648  brwdom3i  9652  unwdomg  9653  xpwdomg  9654  wdomfil  10130  isfin32i  10434  hsmexlem1  10495  hsmexlem3  10497  wdomac  10596
  Copyright terms: Public domain W3C validator