MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Structured version   Visualization version   GIF version

Theorem relwdom 8762
Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom Rel ≼*

Proof of Theorem relwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 8755 . 2 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
21relopabi 5493 1 Rel ≼*
Colors of variables: wff setvar class
Syntax hints:  wo 836   = wceq 1601  wex 1823  c0 4141  Rel wrel 5362  ontowfo 6135  * cwdom 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-opab 4951  df-xp 5363  df-rel 5364  df-wdom 8755
This theorem is referenced by:  brwdom  8763  brwdomi  8764  brwdomn0  8765  wdomtr  8771  wdompwdom  8774  canthwdom  8775  brwdom3i  8779  unwdomg  8780  xpwdomg  8781  wdomfil  9219  isfin32i  9524  hsmexlem1  9585  hsmexlem3  9587  wdomac  9686
  Copyright terms: Public domain W3C validator