| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dom | Structured version Visualization version GIF version | ||
| Description: Define the dominance relation. For an alternate definition see dfdom2 9018. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 9001 and domen 9002. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-dom | ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdom 8983 | . 2 class ≼ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1539 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1 6558 | . . . 4 wff 𝑓:𝑥–1-1→𝑦 |
| 9 | 8, 6 | wex 1779 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1→𝑦 |
| 10 | 9, 2, 4 | copab 5205 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| 11 | 1, 10 | wceq 1540 | 1 wff ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldom 8991 brdom2g 8996 brdomgOLD 8998 enssdom 9017 |
| Copyright terms: Public domain | W3C validator |