MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom Structured version   Visualization version   GIF version

Theorem brwdom 9161
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom (𝑌𝑉 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem brwdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3416 . 2 (𝑌𝑉𝑌 ∈ V)
2 relwdom 9160 . . . . 5 Rel ≼*
32brrelex1i 5590 . . . 4 (𝑋* 𝑌𝑋 ∈ V)
43a1i 11 . . 3 (𝑌 ∈ V → (𝑋* 𝑌𝑋 ∈ V))
5 0ex 5185 . . . . . 6 ∅ ∈ V
6 eleq1a 2826 . . . . . 6 (∅ ∈ V → (𝑋 = ∅ → 𝑋 ∈ V))
75, 6ax-mp 5 . . . . 5 (𝑋 = ∅ → 𝑋 ∈ V)
8 forn 6614 . . . . . . 7 (𝑧:𝑌onto𝑋 → ran 𝑧 = 𝑋)
9 vex 3402 . . . . . . . 8 𝑧 ∈ V
109rnex 7668 . . . . . . 7 ran 𝑧 ∈ V
118, 10eqeltrrdi 2840 . . . . . 6 (𝑧:𝑌onto𝑋𝑋 ∈ V)
1211exlimiv 1938 . . . . 5 (∃𝑧 𝑧:𝑌onto𝑋𝑋 ∈ V)
137, 12jaoi 857 . . . 4 ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) → 𝑋 ∈ V)
1413a1i 11 . . 3 (𝑌 ∈ V → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) → 𝑋 ∈ V))
15 eqeq1 2740 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
16 foeq3 6609 . . . . . . 7 (𝑥 = 𝑋 → (𝑧:𝑦onto𝑥𝑧:𝑦onto𝑋))
1716exbidv 1929 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧 𝑧:𝑦onto𝑥 ↔ ∃𝑧 𝑧:𝑦onto𝑋))
1815, 17orbi12d 919 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥) ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑋)))
19 foeq2 6608 . . . . . . 7 (𝑦 = 𝑌 → (𝑧:𝑦onto𝑋𝑧:𝑌onto𝑋))
2019exbidv 1929 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧 𝑧:𝑦onto𝑋 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
2120orbi2d 916 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑋) ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
22 df-wdom 9159 . . . . 5 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
2318, 21, 22brabg 5405 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
2423expcom 417 . . 3 (𝑌 ∈ V → (𝑋 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))))
254, 14, 24pm5.21ndd 384 . 2 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
261, 25syl 17 1 (𝑌𝑉 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 847   = wceq 1543  wex 1787  wcel 2112  Vcvv 3398  c0 4223   class class class wbr 5039  ran crn 5537  ontowfo 6356  * cwdom 9158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-xp 5542  df-rel 5543  df-cnv 5544  df-dm 5546  df-rn 5547  df-fn 6361  df-fo 6364  df-wdom 9159
This theorem is referenced by:  brwdomi  9162  brwdomn0  9163  0wdom  9164  fowdom  9165  domwdom  9168  wdomnumr  9643
  Copyright terms: Public domain W3C validator