MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom Structured version   Visualization version   GIF version

Theorem brwdom 9527
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom (𝑌𝑉 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem brwdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝑌𝑉𝑌 ∈ V)
2 relwdom 9526 . . . . 5 Rel ≼*
32brrelex1i 5697 . . . 4 (𝑋* 𝑌𝑋 ∈ V)
43a1i 11 . . 3 (𝑌 ∈ V → (𝑋* 𝑌𝑋 ∈ V))
5 0ex 5265 . . . . . 6 ∅ ∈ V
6 eleq1a 2824 . . . . . 6 (∅ ∈ V → (𝑋 = ∅ → 𝑋 ∈ V))
75, 6ax-mp 5 . . . . 5 (𝑋 = ∅ → 𝑋 ∈ V)
8 forn 6778 . . . . . . 7 (𝑧:𝑌onto𝑋 → ran 𝑧 = 𝑋)
9 vex 3454 . . . . . . . 8 𝑧 ∈ V
109rnex 7889 . . . . . . 7 ran 𝑧 ∈ V
118, 10eqeltrrdi 2838 . . . . . 6 (𝑧:𝑌onto𝑋𝑋 ∈ V)
1211exlimiv 1930 . . . . 5 (∃𝑧 𝑧:𝑌onto𝑋𝑋 ∈ V)
137, 12jaoi 857 . . . 4 ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) → 𝑋 ∈ V)
1413a1i 11 . . 3 (𝑌 ∈ V → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) → 𝑋 ∈ V))
15 eqeq1 2734 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
16 foeq3 6773 . . . . . . 7 (𝑥 = 𝑋 → (𝑧:𝑦onto𝑥𝑧:𝑦onto𝑋))
1716exbidv 1921 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧 𝑧:𝑦onto𝑥 ↔ ∃𝑧 𝑧:𝑦onto𝑋))
1815, 17orbi12d 918 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥) ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑋)))
19 foeq2 6772 . . . . . . 7 (𝑦 = 𝑌 → (𝑧:𝑦onto𝑋𝑧:𝑌onto𝑋))
2019exbidv 1921 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧 𝑧:𝑦onto𝑋 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
2120orbi2d 915 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑋) ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
22 df-wdom 9525 . . . . 5 * = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
2318, 21, 22brabg 5502 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
2423expcom 413 . . 3 (𝑌 ∈ V → (𝑋 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))))
254, 14, 24pm5.21ndd 379 . 2 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
261, 25syl 17 1 (𝑌𝑉 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  c0 4299   class class class wbr 5110  ran crn 5642  ontowfo 6512  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fn 6517  df-fo 6520  df-wdom 9525
This theorem is referenced by:  brwdomi  9528  brwdomn0  9529  0wdom  9530  fowdom  9531  domwdom  9534  wdomnumr  10024
  Copyright terms: Public domain W3C validator