| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zeroo | Structured version Visualization version GIF version | ||
| Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of [Adamek] p. 103. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| df-zeroo | ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czeroo 17996 | . 2 class ZeroO | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17676 | . . 3 class Cat | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑐 |
| 5 | cinito 17994 | . . . . 5 class InitO | |
| 6 | 4, 5 | cfv 6531 | . . . 4 class (InitO‘𝑐) |
| 7 | ctermo 17995 | . . . . 5 class TermO | |
| 8 | 4, 7 | cfv 6531 | . . . 4 class (TermO‘𝑐) |
| 9 | 6, 8 | cin 3925 | . . 3 class ((InitO‘𝑐) ∩ (TermO‘𝑐)) |
| 10 | 2, 3, 9 | cmpt 5201 | . 2 class (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) |
| 11 | 1, 10 | wceq 1540 | 1 wff ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zeroofn 18002 zeroorcl 18005 zerooval 18008 |
| Copyright terms: Public domain | W3C validator |