|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-zeroo | Structured version Visualization version GIF version | ||
| Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of [Adamek] p. 103. (Contributed by AV, 3-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| df-zeroo | ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | czeroo 18028 | . 2 class ZeroO | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17707 | . . 3 class Cat | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑐 | 
| 5 | cinito 18026 | . . . . 5 class InitO | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (InitO‘𝑐) | 
| 7 | ctermo 18027 | . . . . 5 class TermO | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (TermO‘𝑐) | 
| 9 | 6, 8 | cin 3950 | . . 3 class ((InitO‘𝑐) ∩ (TermO‘𝑐)) | 
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | 
| 11 | 1, 10 | wceq 1540 | 1 wff ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: zeroofn 18034 zeroorcl 18037 zerooval 18040 | 
| Copyright terms: Public domain | W3C validator |