MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroorcl Structured version   Visualization version   GIF version

Theorem zeroorcl 17929
Description: Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
zeroorcl (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat)

Proof of Theorem zeroorcl
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 17923 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
21mptrcl 6996 1 (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3945  cfv 6535  Catccat 17595  InitOcinito 17918  TermOctermo 17919  ZeroOczeroo 17920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fv 6543  df-zeroo 17923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator