MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroorcl Structured version   Visualization version   GIF version

Theorem zeroorcl 17978
Description: Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
zeroorcl (𝑍 ∈ (ZeroOβ€˜πΆ) β†’ 𝐢 ∈ Cat)

Proof of Theorem zeroorcl
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 17972 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitOβ€˜π‘) ∩ (TermOβ€˜π‘)))
21mptrcl 7007 1 (𝑍 ∈ (ZeroOβ€˜πΆ) β†’ 𝐢 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098   ∩ cin 3938  β€˜cfv 6541  Catccat 17641  InitOcinito 17967  TermOctermo 17968  ZeroOczeroo 17969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-xp 5676  df-rel 5677  df-cnv 5678  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fv 6549  df-zeroo 17972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator