MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroorcl Structured version   Visualization version   GIF version

Theorem zeroorcl 18046
Description: Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
zeroorcl (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat)

Proof of Theorem zeroorcl
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 18040 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
21mptrcl 7025 1 (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cin 3962  cfv 6563  Catccat 17709  InitOcinito 18035  TermOctermo 18036  ZeroOczeroo 18037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fv 6571  df-zeroo 18040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator