| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zeroorcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| zeroorcl | ⊢ (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zeroo 17888 | . 2 ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | |
| 2 | 1 | mptrcl 6933 | 1 ⊢ (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3896 ‘cfv 6476 Catccat 17565 InitOcinito 17883 TermOctermo 17884 ZeroOczeroo 17885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fv 6484 df-zeroo 17888 |
| This theorem is referenced by: zeroo2 49266 oppczeroo 49269 |
| Copyright terms: Public domain | W3C validator |