![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zeroorcl | Structured version Visualization version GIF version |
Description: Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
zeroorcl | ⊢ (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-zeroo 17923 | . 2 ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | |
2 | 1 | mptrcl 6996 | 1 ⊢ (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3945 ‘cfv 6535 Catccat 17595 InitOcinito 17918 TermOctermo 17919 ZeroOczeroo 17920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fv 6543 df-zeroo 17923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |