MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroofn Structured version   Visualization version   GIF version

Theorem zeroofn 17753
Description: ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
zeroofn ZeroO Fn Cat

Proof of Theorem zeroofn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fvex 6817 . . 3 (InitO‘𝑐) ∈ V
21inex1 5250 . 2 ((InitO‘𝑐) ∩ (TermO‘𝑐)) ∈ V
3 df-zeroo 17750 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
42, 3fnmpti 6606 1 ZeroO Fn Cat
Colors of variables: wff setvar class
Syntax hints:  cin 3891   Fn wfn 6453  cfv 6458  Catccat 17422  InitOcinito 17745  TermOctermo 17746  ZeroOczeroo 17747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466  df-zeroo 17750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator