MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroofn Structured version   Visualization version   GIF version

Theorem zeroofn 17951
Description: ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
zeroofn ZeroO Fn Cat

Proof of Theorem zeroofn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . 3 (InitO‘𝑐) ∈ V
21inex1 5272 . 2 ((InitO‘𝑐) ∩ (TermO‘𝑐)) ∈ V
3 df-zeroo 17948 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
42, 3fnmpti 6661 1 ZeroO Fn Cat
Colors of variables: wff setvar class
Syntax hints:  cin 3913   Fn wfn 6506  cfv 6511  Catccat 17625  InitOcinito 17943  TermOctermo 17944  ZeroOczeroo 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-zeroo 17948
This theorem is referenced by:  zeroopropdlem  49228  zeroopropd  49231
  Copyright terms: Public domain W3C validator