MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeroofn Structured version   Visualization version   GIF version

Theorem zeroofn 18034
Description: ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
zeroofn ZeroO Fn Cat

Proof of Theorem zeroofn
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . 3 (InitO‘𝑐) ∈ V
21inex1 5317 . 2 ((InitO‘𝑐) ∩ (TermO‘𝑐)) ∈ V
3 df-zeroo 18031 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
42, 3fnmpti 6711 1 ZeroO Fn Cat
Colors of variables: wff setvar class
Syntax hints:  cin 3950   Fn wfn 6556  cfv 6561  Catccat 17707  InitOcinito 18026  TermOctermo 18027  ZeroOczeroo 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-zeroo 18031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator