MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initofn Structured version   Visualization version   GIF version

Theorem initofn 17912
Description: InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
initofn InitO Fn Cat

Proof of Theorem initofn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6839 . . 3 (Base‘𝑐) ∈ V
21rabex 5281 . 2 {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)} ∈ V
3 df-inito 17909 . 2 InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
42, 3fnmpti 6629 1 InitO Fn Cat
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  ∃!weu 2561  wral 3044  {crab 3396   Fn wfn 6481  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  Catccat 17588  InitOcinito 17906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-inito 17909
This theorem is referenced by:  dftermo3  17931  initopropdlem  49226  initopropd  49229  dfinito4  49487
  Copyright terms: Public domain W3C validator