| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > initofn | Structured version Visualization version GIF version | ||
| Description: InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| Ref | Expression |
|---|---|
| initofn | ⊢ InitO Fn Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . 3 ⊢ (Base‘𝑐) ∈ V | |
| 2 | 1 | rabex 5297 | . 2 ⊢ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} ∈ V |
| 3 | df-inito 17953 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
| 4 | 2, 3 | fnmpti 6664 | 1 ⊢ InitO Fn Cat |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∃!weu 2562 ∀wral 3045 {crab 3408 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Catccat 17632 InitOcinito 17950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-inito 17953 |
| This theorem is referenced by: dftermo3 17975 initopropdlem 49233 initopropd 49236 dfinito4 49494 |
| Copyright terms: Public domain | W3C validator |