Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > initofn | Structured version Visualization version GIF version |
Description: InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
Ref | Expression |
---|---|
initofn | ⊢ InitO Fn Cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . 3 ⊢ (Base‘𝑐) ∈ V | |
2 | 1 | rabex 5251 | . 2 ⊢ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} ∈ V |
3 | df-inito 17615 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
4 | 2, 3 | fnmpti 6560 | 1 ⊢ InitO Fn Cat |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∃!weu 2568 ∀wral 3063 {crab 3067 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 Catccat 17290 InitOcinito 17612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-inito 17615 |
This theorem is referenced by: dftermo3 17637 |
Copyright terms: Public domain | W3C validator |