MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initofn Structured version   Visualization version   GIF version

Theorem initofn 17891
Description: InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
initofn InitO Fn Cat

Proof of Theorem initofn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . 3 (Base‘𝑐) ∈ V
21rabex 5277 . 2 {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)} ∈ V
3 df-inito 17888 . 2 InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
42, 3fnmpti 6624 1 InitO Fn Cat
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  ∃!weu 2563  wral 3047  {crab 3395   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  Catccat 17567  InitOcinito 17885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-inito 17888
This theorem is referenced by:  dftermo3  17910  initopropdlem  49271  initopropd  49274  dfinito4  49532
  Copyright terms: Public domain W3C validator