| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zerooval | Structured version Visualization version GIF version | ||
| Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
| initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| zerooval | ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zeroo 17955 | . 2 ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | |
| 2 | fveq2 6861 | . . 3 ⊢ (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶)) | |
| 3 | fveq2 6861 | . . 3 ⊢ (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶)) | |
| 4 | 2, 3 | ineq12d 4187 | . 2 ⊢ (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 5 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | fvex 6874 | . . . 4 ⊢ (InitO‘𝐶) ∈ V | |
| 7 | 6 | inex1 5275 | . . 3 ⊢ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6994 | 1 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ‘cfv 6514 Basecbs 17186 Hom chom 17238 Catccat 17632 InitOcinito 17950 TermOctermo 17951 ZeroOczeroo 17952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-zeroo 17955 |
| This theorem is referenced by: iszeroo 17967 iszeroi 17978 oppczeroo 49230 zeroopropdlem 49235 zeroopropd 49238 |
| Copyright terms: Public domain | W3C validator |