MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zerooval Structured version   Visualization version   GIF version

Theorem zerooval 17710
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
zerooval (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))

Proof of Theorem zerooval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 17701 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
2 fveq2 6774 . . 3 (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶))
3 fveq2 6774 . . 3 (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶))
42, 3ineq12d 4147 . 2 (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
5 initoval.c . 2 (𝜑𝐶 ∈ Cat)
6 fvex 6787 . . . 4 (InitO‘𝐶) ∈ V
76inex1 5241 . . 3 ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V
87a1i 11 . 2 (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V)
91, 4, 5, 8fvmptd3 6898 1 (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cfv 6433  Basecbs 16912  Hom chom 16973  Catccat 17373  InitOcinito 17696  TermOctermo 17697  ZeroOczeroo 17698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-zeroo 17701
This theorem is referenced by:  iszeroo  17713  iszeroi  17724
  Copyright terms: Public domain W3C validator