| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zerooval | Structured version Visualization version GIF version | ||
| Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
| initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| zerooval | ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zeroo 17954 | . 2 ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | |
| 2 | fveq2 6865 | . . 3 ⊢ (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶)) | |
| 3 | fveq2 6865 | . . 3 ⊢ (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶)) | |
| 4 | 2, 3 | ineq12d 4192 | . 2 ⊢ (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 5 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | fvex 6878 | . . . 4 ⊢ (InitO‘𝐶) ∈ V | |
| 7 | 6 | inex1 5280 | . . 3 ⊢ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6998 | 1 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 ‘cfv 6519 Basecbs 17185 Hom chom 17237 Catccat 17631 InitOcinito 17949 TermOctermo 17950 ZeroOczeroo 17951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-zeroo 17954 |
| This theorem is referenced by: iszeroo 17966 iszeroi 17977 oppczeroo 49138 zeroopropdlem 49143 zeroopropd 49146 |
| Copyright terms: Public domain | W3C validator |