MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zerooval Structured version   Visualization version   GIF version

Theorem zerooval 17944
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
zerooval (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))

Proof of Theorem zerooval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 17935 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
2 fveq2 6881 . . 3 (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶))
3 fveq2 6881 . . 3 (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶))
42, 3ineq12d 4205 . 2 (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
5 initoval.c . 2 (𝜑𝐶 ∈ Cat)
6 fvex 6894 . . . 4 (InitO‘𝐶) ∈ V
76inex1 5307 . . 3 ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V
87a1i 11 . 2 (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V)
91, 4, 5, 8fvmptd3 7011 1 (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cin 3939  cfv 6533  Basecbs 17140  Hom chom 17204  Catccat 17604  InitOcinito 17930  TermOctermo 17931  ZeroOczeroo 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-zeroo 17935
This theorem is referenced by:  iszeroo  17947  iszeroi  17958
  Copyright terms: Public domain W3C validator