| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zerooval | Structured version Visualization version GIF version | ||
| Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
| initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| zerooval | ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zeroo 17890 | . 2 ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | |
| 2 | fveq2 6822 | . . 3 ⊢ (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶)) | |
| 3 | fveq2 6822 | . . 3 ⊢ (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶)) | |
| 4 | 2, 3 | ineq12d 4171 | . 2 ⊢ (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 5 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | fvex 6835 | . . . 4 ⊢ (InitO‘𝐶) ∈ V | |
| 7 | 6 | inex1 5255 | . . 3 ⊢ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6952 | 1 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ‘cfv 6481 Basecbs 17117 Hom chom 17169 Catccat 17567 InitOcinito 17885 TermOctermo 17886 ZeroOczeroo 17887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-zeroo 17890 |
| This theorem is referenced by: iszeroo 17902 iszeroi 17913 oppczeroo 49268 zeroopropdlem 49273 zeroopropd 49276 |
| Copyright terms: Public domain | W3C validator |