MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zerooval Structured version   Visualization version   GIF version

Theorem zerooval 17904
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
zerooval (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))

Proof of Theorem zerooval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 17895 . 2 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
2 fveq2 6828 . . 3 (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶))
3 fveq2 6828 . . 3 (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶))
42, 3ineq12d 4170 . 2 (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
5 initoval.c . 2 (𝜑𝐶 ∈ Cat)
6 fvex 6841 . . . 4 (InitO‘𝐶) ∈ V
76inex1 5257 . . 3 ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V
87a1i 11 . 2 (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V)
91, 4, 5, 8fvmptd3 6958 1 (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  cfv 6486  Basecbs 17122  Hom chom 17174  Catccat 17572  InitOcinito 17890  TermOctermo 17891  ZeroOczeroo 17892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-zeroo 17895
This theorem is referenced by:  iszeroo  17907  iszeroi  17918  oppczeroo  49362  zeroopropdlem  49367  zeroopropd  49370
  Copyright terms: Public domain W3C validator