MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zs Structured version   Visualization version   GIF version

Definition df-zs 28298
Description: Define the surreal integers. Compare dfz2 12482. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
df-zs s = ( -s “ (ℕs × ℕs))

Detailed syntax breakdown of Definition df-zs
StepHypRef Expression
1 czs 28297 . 2 class s
2 csubs 27957 . . 3 class -s
3 cnns 28238 . . . 4 class s
43, 3cxp 5609 . . 3 class (ℕs × ℕs)
52, 4cima 5614 . 2 class ( -s “ (ℕs × ℕs))
61, 5wceq 1541 1 wff s = ( -s “ (ℕs × ℕs))
Colors of variables: wff setvar class
This definition is referenced by:  zsex  28299  zssno  28300  elzs  28303
  Copyright terms: Public domain W3C validator