MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zs Structured version   Visualization version   GIF version

Definition df-zs 28267
Description: Define the surreal integers. Compare dfz2 12548. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
df-zs s = ( -s “ (ℕs × ℕs))

Detailed syntax breakdown of Definition df-zs
StepHypRef Expression
1 czs 28266 . 2 class s
2 csubs 27926 . . 3 class -s
3 cnns 28207 . . . 4 class s
43, 3cxp 5636 . . 3 class (ℕs × ℕs)
52, 4cima 5641 . 2 class ( -s “ (ℕs × ℕs))
61, 5wceq 1540 1 wff s = ( -s “ (ℕs × ℕs))
Colors of variables: wff setvar class
This definition is referenced by:  zsex  28268  zssno  28269  elzs  28272
  Copyright terms: Public domain W3C validator