| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zs | Structured version Visualization version GIF version | ||
| Description: Define the surreal integers. Compare dfz2 12632. (Contributed by Scott Fenton, 17-May-2025.) |
| Ref | Expression |
|---|---|
| df-zs | ⊢ ℤs = ( -s “ (ℕs × ℕs)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czs 28364 | . 2 class ℤs | |
| 2 | csubs 28052 | . . 3 class -s | |
| 3 | cnns 28319 | . . . 4 class ℕs | |
| 4 | 3, 3 | cxp 5683 | . . 3 class (ℕs × ℕs) |
| 5 | 2, 4 | cima 5688 | . 2 class ( -s “ (ℕs × ℕs)) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℤs = ( -s “ (ℕs × ℕs)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zsex 28366 zssno 28367 elzs 28370 |
| Copyright terms: Public domain | W3C validator |