![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zssno | Structured version Visualization version GIF version |
Description: The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025.) |
Ref | Expression |
---|---|
zssno | ⊢ ℤs ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6072 | . 2 ⊢ ( -s “ (ℕs × ℕs)) ⊆ ran -s | |
2 | df-zs 28326 | . 2 ⊢ ℤs = ( -s “ (ℕs × ℕs)) | |
3 | subsfo 28069 | . . . 4 ⊢ -s :( No × No )–onto→ No | |
4 | forn 6810 | . . . 4 ⊢ ( -s :( No × No )–onto→ No → ran -s = No ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ran -s = No |
6 | 5 | eqcomi 2735 | . 2 ⊢ No = ran -s |
7 | 1, 2, 6 | 3sstr4i 4022 | 1 ⊢ ℤs ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ⊆ wss 3946 × cxp 5672 ran crn 5675 “ cima 5677 –onto→wfo 6544 No csur 27666 -s csubs 28027 ℕscnns 28284 ℤsczs 28325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-nadd 8688 df-no 27669 df-slt 27670 df-bday 27671 df-sslt 27808 df-scut 27810 df-0s 27851 df-made 27868 df-old 27869 df-left 27871 df-right 27872 df-norec 27949 df-norec2 27960 df-adds 27971 df-negs 28028 df-subs 28029 df-zs 28326 |
This theorem is referenced by: zno 28329 |
Copyright terms: Public domain | W3C validator |