MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs Structured version   Visualization version   GIF version

Theorem elzs 28277
Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
elzs (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elzs
StepHypRef Expression
1 df-zs 28272 . . 3 s = ( -s “ (ℕs × ℕs))
21eleq2i 2820 . 2 (𝐴 ∈ ℤs𝐴 ∈ ( -s “ (ℕs × ℕs)))
3 subsfn 27935 . . 3 -s Fn ( No × No )
4 nnssno 28220 . . . 4 s No
5 xpss12 5634 . . . 4 ((ℕs No ∧ ℕs No ) → (ℕs × ℕs) ⊆ ( No × No ))
64, 4, 5mp2an 692 . . 3 (ℕs × ℕs) ⊆ ( No × No )
7 ovelimab 7527 . . 3 (( -s Fn ( No × No ) ∧ (ℕs × ℕs) ⊆ ( No × No )) → (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)))
83, 6, 7mp2an 692 . 2 (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
92, 8bitri 275 1 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  wss 3903   × cxp 5617  cima 5622   Fn wfn 6477  (class class class)co 7349   No csur 27549   -s csubs 27931  scnns 28212  sczs 28271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec2 27861  df-adds 27872  df-subs 27933  df-n0s 28213  df-nns 28214  df-zs 28272
This theorem is referenced by:  nnzsubs  28278  nnzs  28279  0zs  28281  znegscl  28285  zaddscl  28287  zmulscld  28290  elzn0s  28291  eln0zs  28293  zseo  28314
  Copyright terms: Public domain W3C validator