MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs Structured version   Visualization version   GIF version

Theorem elzs 28272
Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.)
Assertion
Ref Expression
elzs (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elzs
StepHypRef Expression
1 df-zs 28267 . . 3 s = ( -s “ (ℕs × ℕs))
21eleq2i 2820 . 2 (𝐴 ∈ ℤs𝐴 ∈ ( -s “ (ℕs × ℕs)))
3 subsfn 27930 . . 3 -s Fn ( No × No )
4 nnssno 28215 . . . 4 s No
5 xpss12 5653 . . . 4 ((ℕs No ∧ ℕs No ) → (ℕs × ℕs) ⊆ ( No × No ))
64, 4, 5mp2an 692 . . 3 (ℕs × ℕs) ⊆ ( No × No )
7 ovelimab 7567 . . 3 (( -s Fn ( No × No ) ∧ (ℕs × ℕs) ⊆ ( No × No )) → (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)))
83, 6, 7mp2an 692 . 2 (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
92, 8bitri 275 1 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  wss 3914   × cxp 5636  cima 5641   Fn wfn 6506  (class class class)co 7387   No csur 27551   -s csubs 27926  scnns 28207  sczs 28266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-adds 27867  df-subs 27928  df-n0s 28208  df-nns 28209  df-zs 28267
This theorem is referenced by:  nnzsubs  28273  nnzs  28274  0zs  28276  znegscl  28280  zaddscl  28282  zmulscld  28285  elzn0s  28286  eln0zs  28288  zseo  28308
  Copyright terms: Public domain W3C validator