| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elzs | Structured version Visualization version GIF version | ||
| Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.) |
| Ref | Expression |
|---|---|
| elzs | ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zs 28267 | . . 3 ⊢ ℤs = ( -s “ (ℕs × ℕs)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ ℤs ↔ 𝐴 ∈ ( -s “ (ℕs × ℕs))) |
| 3 | subsfn 27930 | . . 3 ⊢ -s Fn ( No × No ) | |
| 4 | nnssno 28215 | . . . 4 ⊢ ℕs ⊆ No | |
| 5 | xpss12 5653 | . . . 4 ⊢ ((ℕs ⊆ No ∧ ℕs ⊆ No ) → (ℕs × ℕs) ⊆ ( No × No )) | |
| 6 | 4, 4, 5 | mp2an 692 | . . 3 ⊢ (ℕs × ℕs) ⊆ ( No × No ) |
| 7 | ovelimab 7567 | . . 3 ⊢ (( -s Fn ( No × No ) ∧ (ℕs × ℕs) ⊆ ( No × No )) → (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))) | |
| 8 | 3, 6, 7 | mp2an 692 | . 2 ⊢ (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 × cxp 5636 “ cima 5641 Fn wfn 6506 (class class class)co 7387 No csur 27551 -s csubs 27926 ℕscnns 28207 ℤsczs 28266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec2 27856 df-adds 27867 df-subs 27928 df-n0s 28208 df-nns 28209 df-zs 28267 |
| This theorem is referenced by: nnzsubs 28273 nnzs 28274 0zs 28276 znegscl 28280 zaddscl 28282 zmulscld 28285 elzn0s 28286 eln0zs 28288 zseo 28308 |
| Copyright terms: Public domain | W3C validator |