| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elzs | Structured version Visualization version GIF version | ||
| Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.) |
| Ref | Expression |
|---|---|
| elzs | ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zs 28307 | . . 3 ⊢ ℤs = ( -s “ (ℕs × ℕs)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ ℤs ↔ 𝐴 ∈ ( -s “ (ℕs × ℕs))) |
| 3 | subsfn 27970 | . . 3 ⊢ -s Fn ( No × No ) | |
| 4 | nnssno 28255 | . . . 4 ⊢ ℕs ⊆ No | |
| 5 | xpss12 5646 | . . . 4 ⊢ ((ℕs ⊆ No ∧ ℕs ⊆ No ) → (ℕs × ℕs) ⊆ ( No × No )) | |
| 6 | 4, 4, 5 | mp2an 692 | . . 3 ⊢ (ℕs × ℕs) ⊆ ( No × No ) |
| 7 | ovelimab 7547 | . . 3 ⊢ (( -s Fn ( No × No ) ∧ (ℕs × ℕs) ⊆ ( No × No )) → (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))) | |
| 8 | 3, 6, 7 | mp2an 692 | . 2 ⊢ (𝐴 ∈ ( -s “ (ℕs × ℕs)) ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 × cxp 5629 “ cima 5634 Fn wfn 6494 (class class class)co 7369 No csur 27584 -s csubs 27966 ℕscnns 28247 ℤsczs 28306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec2 27896 df-adds 27907 df-subs 27968 df-n0s 28248 df-nns 28249 df-zs 28307 |
| This theorem is referenced by: nnzsubs 28313 nnzs 28314 0zs 28316 znegscl 28320 zaddscl 28322 zmulscld 28325 elzn0s 28326 eln0zs 28328 zseo 28349 |
| Copyright terms: Public domain | W3C validator |