| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd2an | Structured version Visualization version GIF version | ||
| Description: Definition of a 2-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd2an | ⊢ (( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vd1 44590 | . 2 ⊢ (( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) ↔ (( 𝜑 , 𝜓 ) → 𝜒)) | |
| 2 | df-vhc2 44601 | . . 3 ⊢ (( 𝜑 , 𝜓 ) ↔ (𝜑 ∧ 𝜓)) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((( 𝜑 , 𝜓 ) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ( wvd1 44589 ( wvhc2 44600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44590 df-vhc2 44601 |
| This theorem is referenced by: dfvd2ani 44603 dfvd2anir 44604 iden2 44634 |
| Copyright terms: Public domain | W3C validator |