![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi1i | Structured version Visualization version GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi1 339 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: ancomst 458 imor 884 ifpn 1099 eximal 1881 19.43 1985 19.37v 2096 19.37 2275 dfsb3 2505 sbrim 2527 sbor 2529 mo4f 2636 mo4fOLD 2637 2mos 2732 neor 3090 r3al 3149 r19.23t 3230 r19.23v 3232 r19.43 3303 ceqsralt 3446 ralab 3590 ralrab 3591 euind 3618 reu2 3619 rmo4 3624 rmo3f 3628 rmo4f 3629 reuind 3638 2reu5lem3 3642 rmo3 3752 dfdif3 3947 raldifb 3977 unss 4014 ralunb 4021 inssdif0 4177 ssundif 4275 dfif2 4308 pwss 4395 ralsnsg 4436 disjsn 4465 snssg 4534 raldifsni 4544 raldifsnb 4545 unissb 4691 intun 4729 intpr 4730 dfiin2g 4773 disjor 4855 dftr2 4977 axrep1 4995 axpweq 5064 zfpow 5066 axpow2 5067 reusv2lem4 5101 reusv2 5103 raliunxp 5494 idrefALT 5750 asymref2 5755 dffun2 6133 dffun4 6135 dffun5 6136 dffun7 6150 fununi 6197 fvn0ssdmfun 6599 dff13 6767 dff14b 6783 zfun 7210 uniex2 7212 dfom2 7328 fimaxg 8476 fiint 8506 dfsup2 8619 fiming 8673 oemapso 8856 scottexs 9027 scott0s 9028 iscard2 9115 acnnum 9188 dfac9 9273 dfacacn 9278 kmlem4 9290 kmlem12 9298 axpowndlem3 9736 zfcndun 9752 zfcndpow 9753 zfcndac 9756 axgroth5 9961 grothpw 9963 axgroth6 9965 addsrmo 10210 mulsrmo 10211 infm3 11312 raluz2 12019 nnwos 12038 ralrp 12134 cotr2g 14094 lo1resb 14672 rlimresb 14673 o1resb 14674 modfsummod 14900 isprm4 15769 acsfn1 16674 acsfn2 16676 lublecllem 17341 isirred2 19055 isdomn2 19660 iunocv 20388 ist1-2 21522 isnrm2 21533 dfconn2 21593 alexsubALTlem3 22223 ismbl 23692 dyadmbllem 23765 ellimc3 24042 dchrelbas2 25375 dchrelbas3 25376 isch2 28624 choc0 28729 h1dei 28953 mdsl2i 29725 disjorf 29928 bnj1101 31390 bnj1109 31392 bnj1533 31457 bnj580 31518 bnj864 31527 bnj865 31528 bnj978 31554 bnj1049 31577 bnj1090 31582 bnj1145 31596 axextprim 32111 axunprim 32113 axpowprim 32114 untuni 32119 3orit 32129 biimpexp 32130 elintfv 32193 dfon2lem8 32222 soseq 32282 dfom5b 32547 bj-axrep1 33306 bj-zfpow 33313 bj-raldifsn 33570 rdgeqoa 33756 wl-equsalcom 33865 poimirlem25 33971 poimirlem30 33976 tsim1 34470 inxpss 34624 idinxpss 34625 idinxpssinxp 34629 ineleq 34660 cocossss 34732 cosscnvssid3 34767 trcoss2 34775 eqvrelcoels4 34903 redpbi1 34913 cvlsupr3 35412 pmapglbx 35837 isltrn2N 36188 cdlemefrs29bpre0 36464 fphpd 38217 dford4 38432 fnwe2lem2 38457 isdomn3 38618 ifpidg 38671 ifpid1g 38674 ifpor123g 38688 undmrnresiss 38744 elintima 38779 df3or2 38894 dfhe3 38902 dffrege76 39066 dffrege115 39105 frege131 39121 ntrneikb 39225 ntrneixb 39226 pm14.12 39454 dfvd2an 39619 dfvd3 39628 dfvd3an 39631 uun2221 39860 uun2221p1 39861 uun2221p2 39862 disjinfi 40181 supxrleubrnmptf 40468 fsummulc1f 40590 fsumiunss 40595 fnlimfvre2 40697 limsupreuz 40757 limsupvaluz2 40758 dvmptmulf 40940 dvnmul 40946 dvmptfprodlem 40947 dvnprodlem2 40950 sge0ltfirpmpt2 41427 hoidmv1le 41595 hoidmvle 41601 vonioolem2 41682 smflimlem3 41768 setrec2 43330 aacllem 43436 |
Copyright terms: Public domain | W3C validator |