Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2ani Structured version   Visualization version   GIF version

Theorem dfvd2ani 42203
Description: Inference form of dfvd2an 42202. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2ani.1 (   (   𝜑   ,   𝜓   )   ▶   𝜒   )
Assertion
Ref Expression
dfvd2ani ((𝜑𝜓) → 𝜒)

Proof of Theorem dfvd2ani
StepHypRef Expression
1 dfvd2ani.1 . 2 (   (   𝜑   ,   𝜓   )   ▶   𝜒   )
2 dfvd2an 42202 . 2 ((   (   𝜑   ,   𝜓   )   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))
31, 2mpbi 229 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  (   wvd1 42189  (   wvhc2 42200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 42190  df-vhc2 42201
This theorem is referenced by:  int2  42226  el021old  42321  el2122old  42339  un0.1  42399  un10  42408  un01  42409
  Copyright terms: Public domain W3C validator