Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iden2 Structured version   Visualization version   GIF version

Theorem iden2 42234
Description: Virtual deduction identity rule. simpr 485 in conjunction form Virtual Deduction notation. (Contributed by Alan Sare, 5-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iden2 (   (   𝜑   ,   𝜓   )   ▶   𝜓   )

Proof of Theorem iden2
StepHypRef Expression
1 simpr 485 . 2 ((𝜑𝜓) → 𝜓)
2 dfvd2an 42202 . 2 ((   (   𝜑   ,   𝜓   )   ▶   𝜓   ) ↔ ((𝜑𝜓) → 𝜓))
31, 2mpbir 230 1 (   (   𝜑   ,   𝜓   )   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  (   wvd1 42189  (   wvhc2 42200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd1 42190  df-vhc2 42201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator