| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e111 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e111.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e111.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e111.3 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| e111.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| e111 | ⊢ ( 𝜑 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e111.3 | . . . . 5 ⊢ ( 𝜑 ▶ 𝜃 ) | |
| 2 | 1 | in1 44563 | . . . 4 ⊢ (𝜑 → 𝜃) |
| 3 | e111.1 | . . . . . . 7 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 4 | 3 | in1 44563 | . . . . . 6 ⊢ (𝜑 → 𝜓) |
| 5 | e111.2 | . . . . . . 7 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 6 | 5 | in1 44563 | . . . . . 6 ⊢ (𝜑 → 𝜒) |
| 7 | e111.4 | . . . . . 6 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 8 | 4, 6, 7 | syl2im 40 | . . . . 5 ⊢ (𝜑 → (𝜑 → (𝜃 → 𝜏))) |
| 9 | 8 | pm2.43i 52 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 10 | 2, 9 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝜑 → 𝜏)) |
| 11 | 10 | pm2.43i 52 | . 2 ⊢ (𝜑 → 𝜏) |
| 12 | 11 | dfvd1ir 44565 | 1 ⊢ ( 𝜑 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44562 |
| This theorem is referenced by: e110 44668 e101 44670 e011 44672 e100 44674 e010 44676 e001 44678 e11 44680 ordelordALTVD 44858 |
| Copyright terms: Public domain | W3C validator |