Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e111 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e111.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e111.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e111.3 | ⊢ ( 𝜑 ▶ 𝜃 ) |
e111.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
e111 | ⊢ ( 𝜑 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e111.3 | . . . . 5 ⊢ ( 𝜑 ▶ 𝜃 ) | |
2 | 1 | in1 42191 | . . . 4 ⊢ (𝜑 → 𝜃) |
3 | e111.1 | . . . . . . 7 ⊢ ( 𝜑 ▶ 𝜓 ) | |
4 | 3 | in1 42191 | . . . . . 6 ⊢ (𝜑 → 𝜓) |
5 | e111.2 | . . . . . . 7 ⊢ ( 𝜑 ▶ 𝜒 ) | |
6 | 5 | in1 42191 | . . . . . 6 ⊢ (𝜑 → 𝜒) |
7 | e111.4 | . . . . . 6 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
8 | 4, 6, 7 | syl2im 40 | . . . . 5 ⊢ (𝜑 → (𝜑 → (𝜃 → 𝜏))) |
9 | 8 | pm2.43i 52 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) |
10 | 2, 9 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝜑 → 𝜏)) |
11 | 10 | pm2.43i 52 | . 2 ⊢ (𝜑 → 𝜏) |
12 | 11 | dfvd1ir 42193 | 1 ⊢ ( 𝜑 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: e110 42296 e101 42298 e011 42300 e100 42302 e010 42304 e001 42306 e11 42308 ordelordALTVD 42487 |
Copyright terms: Public domain | W3C validator |