Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Visualization version   GIF version

Theorem vd01 44610
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1 𝜑
Assertion
Ref Expression
vd01 (   𝜓   ▶   𝜑   )

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3 𝜑
21a1i 11 . 2 (𝜓𝜑)
32dfvd1ir 44586 1 (   𝜓   ▶   𝜑   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd1 44582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-vd1 44583
This theorem is referenced by:  e210  44672  e201  44674  e021  44678  e012  44680  e102  44682  e110  44689  e101  44691  e011  44693  e100  44695  e010  44697  e001  44699  e01  44704  e10  44707  sspwimpVD  44932
  Copyright terms: Public domain W3C validator