Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Visualization version   GIF version

Theorem vd01 43129
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1 𝜑
Assertion
Ref Expression
vd01 (   𝜓   ▶   𝜑   )

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3 𝜑
21a1i 11 . 2 (𝜓𝜑)
32dfvd1ir 43105 1 (   𝜓   ▶   𝜑   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd1 43101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 43102
This theorem is referenced by:  e210  43191  e201  43193  e021  43197  e012  43199  e102  43201  e110  43208  e101  43210  e011  43212  e100  43214  e010  43216  e001  43218  e01  43223  e10  43226  sspwimpVD  43451
  Copyright terms: Public domain W3C validator