Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vd01 | Structured version Visualization version GIF version |
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vd01.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vd01 | ⊢ ( 𝜓 ▶ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vd01.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
3 | 2 | dfvd1ir 42193 | 1 ⊢ ( 𝜓 ▶ 𝜑 ) |
Colors of variables: wff setvar class |
Syntax hints: ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: e210 42279 e201 42281 e021 42285 e012 42287 e102 42289 e110 42296 e101 42298 e011 42300 e100 42302 e010 42304 e001 42306 e01 42311 e10 42314 sspwimpVD 42539 |
Copyright terms: Public domain | W3C validator |