Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Visualization version   GIF version

Theorem vd01 42217
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1 𝜑
Assertion
Ref Expression
vd01 (   𝜓   ▶   𝜑   )

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3 𝜑
21a1i 11 . 2 (𝜓𝜑)
32dfvd1ir 42193 1 (   𝜓   ▶   𝜑   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd1 42189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 42190
This theorem is referenced by:  e210  42279  e201  42281  e021  42285  e012  42287  e102  42289  e110  42296  e101  42298  e011  42300  e100  42302  e010  42304  e001  42306  e01  42311  e10  42314  sspwimpVD  42539
  Copyright terms: Public domain W3C validator