Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e012 Structured version   Visualization version   GIF version

Theorem e012 42240
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e012.1 𝜑
e012.2 (   𝜓   ▶   𝜒   )
e012.3 (   𝜓   ,   𝜃   ▶   𝜏   )
e012.4 (𝜑 → (𝜒 → (𝜏𝜂)))
Assertion
Ref Expression
e012 (   𝜓   ,   𝜃   ▶   𝜂   )

Proof of Theorem e012
StepHypRef Expression
1 e012.1 . . 3 𝜑
21vd01 42170 . 2 (   𝜓   ▶   𝜑   )
3 e012.2 . 2 (   𝜓   ▶   𝜒   )
4 e012.3 . 2 (   𝜓   ,   𝜃   ▶   𝜏   )
5 e012.4 . 2 (𝜑 → (𝜒 → (𝜏𝜂)))
62, 3, 4, 5e112 42227 1 (   𝜓   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42142  (   wvd2 42150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd1 42143  df-vd2 42151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator