Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e03an Structured version   Visualization version   GIF version

Theorem e03an 42224
Description: Conjunction form of e03 42222. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e03an.1 𝜑
e03an.2 (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜏   )
e03an.3 ((𝜑𝜏) → 𝜂)
Assertion
Ref Expression
e03an (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜂   )

Proof of Theorem e03an
StepHypRef Expression
1 e03an.1 . 2 𝜑
2 e03an.2 . 2 (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜏   )
3 e03an.3 . . 3 ((𝜑𝜏) → 𝜂)
43ex 416 . 2 (𝜑 → (𝜏𝜂))
51, 2, 4e03 42222 1 (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  (   wvd3 42069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-vd3 42072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator