|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10an | Structured version Visualization version GIF version | ||
| Description: Conjunction form of e10 44714. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| e10an.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | 
| e10an.2 | ⊢ 𝜒 | 
| e10an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| e10an | ⊢ ( 𝜑 ▶ 𝜃 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e10an.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10an.2 | . 2 ⊢ 𝜒 | |
| 3 | e10an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | 
| 5 | 1, 2, 4 | e10 44714 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ( wvd1 44589 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44590 | 
| This theorem is referenced by: snsslVD 44849 | 
| Copyright terms: Public domain | W3C validator |