Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snsslVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssl 42339. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snsslVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snsslVD | ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 42083 | . . 3 ⊢ ( {𝐴} ⊆ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) | |
2 | snsslVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | snid 4594 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
4 | ssel2 3912 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐵) | |
5 | 1, 3, 4 | e10an 42204 | . 2 ⊢ ( {𝐴} ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
6 | 5 | in1 42080 | 1 ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 df-vd1 42079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |