![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snsslVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssl 44828. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snsslVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snsslVD | ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 44572 | . . 3 ⊢ ( {𝐴} ⊆ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) | |
2 | snsslVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | snid 4667 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
4 | ssel2 3990 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐵) | |
5 | 1, 3, 4 | e10an 44693 | . 2 ⊢ ( {𝐴} ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
6 | 5 | in1 44569 | 1 ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-sn 4632 df-vd1 44568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |