| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snsslVD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of snssl 44862. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snsslVD.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snsslVD | ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44607 | . . 3 ⊢ ( {𝐴} ⊆ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) | |
| 2 | snsslVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snid 4610 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 4 | ssel2 3924 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐵) | |
| 5 | 1, 3, 4 | e10an 44728 | . 2 ⊢ ( {𝐴} ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 6 | 5 | in1 44604 | 1 ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-sn 4572 df-vd1 44603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |