Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsslVD Structured version   Visualization version   GIF version

Theorem snsslVD 39821
Description: Virtual deduction proof of snssl 39822. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snsslVD.1 𝐴 ∈ V
Assertion
Ref Expression
snsslVD ({𝐴} ⊆ 𝐵𝐴𝐵)

Proof of Theorem snsslVD
StepHypRef Expression
1 idn1 39556 . . 3 (   {𝐴} ⊆ 𝐵   ▶   {𝐴} ⊆ 𝐵   )
2 snsslVD.1 . . . 4 𝐴 ∈ V
32snid 4400 . . 3 𝐴 ∈ {𝐴}
4 ssel2 3793 . . 3 (({𝐴} ⊆ 𝐵𝐴 ∈ {𝐴}) → 𝐴𝐵)
51, 3, 4e10an 39686 . 2 (   {𝐴} ⊆ 𝐵   ▶   𝐴𝐵   )
65in1 39553 1 ({𝐴} ⊆ 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  Vcvv 3385  wss 3769  {csn 4368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-v 3387  df-in 3776  df-ss 3783  df-sn 4369  df-vd1 39552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator