| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snsslVD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of snssl 44821. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snsslVD.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snsslVD | ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44566 | . . 3 ⊢ ( {𝐴} ⊆ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) | |
| 2 | snsslVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snid 4643 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 4 | ssel2 3958 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐵) | |
| 5 | 1, 3, 4 | e10an 44687 | . 2 ⊢ ( {𝐴} ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 6 | 5 | in1 44563 | 1 ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-sn 4607 df-vd1 44562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |