Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e13an Structured version   Visualization version   GIF version

Theorem e13an 42258
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e13an.1 (   𝜑   ▶   𝜓   )
e13an.2 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜏   )
e13an.3 ((𝜓𝜏) → 𝜂)
Assertion
Ref Expression
e13an (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜂   )

Proof of Theorem e13an
StepHypRef Expression
1 e13an.1 . 2 (   𝜑   ▶   𝜓   )
2 e13an.2 . 2 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜏   )
3 e13an.3 . . 3 ((𝜓𝜏) → 𝜂)
43ex 412 . 2 (𝜓 → (𝜏𝜂))
51, 2, 4e13 42257 1 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  (   wvd1 42078  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd1 42079  df-vd3 42099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator