Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e13 Structured version   Visualization version   GIF version

Theorem e13 42368
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e13.1 (   𝜑   ▶   𝜓   )
e13.2 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜏   )
e13.3 (𝜓 → (𝜏𝜂))
Assertion
Ref Expression
e13 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜂   )

Proof of Theorem e13
StepHypRef Expression
1 e13.1 . . 3 (   𝜑   ▶   𝜓   )
21vd13 42221 . 2 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜓   )
3 e13.2 . 2 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜏   )
4 e13.3 . 2 (𝜓 → (𝜏𝜂))
52, 3, 4e33 42354 1 (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42189  (   wvd3 42207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-vd1 42190  df-vd3 42210
This theorem is referenced by:  e13an  42369  en3lplem2VD  42464  rspsbc2VD  42475  ssralv2VD  42486  imbi12VD  42493  imbi13VD  42494  truniALTVD  42498
  Copyright terms: Public domain W3C validator