| Mathbox for Alan Sare | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e13 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| e13.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | 
| e13.2 | ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) | 
| e13.3 | ⊢ (𝜓 → (𝜏 → 𝜂)) | 
| Ref | Expression | 
|---|---|
| e13 | ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e13.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd13 44562 | . 2 ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜓 ) | 
| 3 | e13.2 | . 2 ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) | |
| 4 | e13.3 | . 2 ⊢ (𝜓 → (𝜏 → 𝜂)) | |
| 5 | 2, 3, 4 | e33 44695 | 1 ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ( wvd1 44530 ( wvd3 44548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd1 44531 df-vd3 44551 | 
| This theorem is referenced by: e13an 44710 en3lplem2VD 44805 rspsbc2VD 44816 ssralv2VD 44827 imbi12VD 44834 imbi13VD 44835 truniALTVD 44839 | 
| Copyright terms: Public domain | W3C validator |