|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e22an | Structured version Visualization version GIF version | ||
| Description: Conjunction form of e22 44691. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| e22an.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | 
| e22an.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | 
| e22an.3 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| e22an | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e22an.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | e22an.2 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 3 | e22an.3 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | 
| 5 | 1, 2, 4 | e22 44691 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ( wvd2 44597 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44598 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |