![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e22 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e22.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e22.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e22.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e22 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e22.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | e22.2 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
3 | e22.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜒 → (𝜒 → (𝜃 → 𝜏))) |
5 | 1, 1, 2, 4 | e222 44607 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 44548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44549 |
This theorem is referenced by: e22an 44643 e02 44668 e12 44695 e20 44698 e21 44701 sspwtr 44792 pwtrVD 44795 pwtrrVD 44796 elex22VD 44810 tpid3gVD 44813 en3lplem2VD 44815 imbi12VD 44844 truniALTVD 44849 trintALTVD 44851 onfrALTlem3VD 44858 onfrALTlem2VD 44860 ax6e2eqVD 44878 ax6e2ndeqVD 44880 sb5ALTVD 44884 |
Copyright terms: Public domain | W3C validator |