Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e22 Structured version   Visualization version   GIF version

Theorem e22 44791
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e22.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e22.2 (   𝜑   ,   𝜓   ▶   𝜃   )
e22.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
e22 (   𝜑   ,   𝜓   ▶   𝜏   )

Proof of Theorem e22
StepHypRef Expression
1 e22.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e22.2 . 2 (   𝜑   ,   𝜓   ▶   𝜃   )
3 e22.3 . . 3 (𝜒 → (𝜃𝜏))
43a1i 11 . 2 (𝜒 → (𝜒 → (𝜃𝜏)))
51, 1, 2, 4e222 44756 1 (   𝜑   ,   𝜓   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44698
This theorem is referenced by:  e22an  44792  e02  44817  e12  44843  e20  44846  e21  44849  sspwtr  44940  pwtrVD  44943  pwtrrVD  44944  elex22VD  44958  tpid3gVD  44961  en3lplem2VD  44963  imbi12VD  44992  truniALTVD  44997  trintALTVD  44999  onfrALTlem3VD  45006  onfrALTlem2VD  45008  ax6e2eqVD  45026  ax6e2ndeqVD  45028  sb5ALTVD  45032
  Copyright terms: Public domain W3C validator