![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e22 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e22.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e22.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e22.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e22 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e22.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | e22.2 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
3 | e22.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜒 → (𝜒 → (𝜃 → 𝜏))) |
5 | 1, 1, 2, 4 | e222 44634 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 44575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44576 |
This theorem is referenced by: e22an 44670 e02 44695 e12 44722 e20 44725 e21 44728 sspwtr 44819 pwtrVD 44822 pwtrrVD 44823 elex22VD 44837 tpid3gVD 44840 en3lplem2VD 44842 imbi12VD 44871 truniALTVD 44876 trintALTVD 44878 onfrALTlem3VD 44885 onfrALTlem2VD 44887 ax6e2eqVD 44905 ax6e2ndeqVD 44907 sb5ALTVD 44911 |
Copyright terms: Public domain | W3C validator |