Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e22 Structured version   Visualization version   GIF version

Theorem e22 44642
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e22.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e22.2 (   𝜑   ,   𝜓   ▶   𝜃   )
e22.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
e22 (   𝜑   ,   𝜓   ▶   𝜏   )

Proof of Theorem e22
StepHypRef Expression
1 e22.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e22.2 . 2 (   𝜑   ,   𝜓   ▶   𝜃   )
3 e22.3 . . 3 (𝜒 → (𝜃𝜏))
43a1i 11 . 2 (𝜒 → (𝜒 → (𝜃𝜏)))
51, 1, 2, 4e222 44607 1 (   𝜑   ,   𝜓   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 44548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd2 44549
This theorem is referenced by:  e22an  44643  e02  44668  e12  44695  e20  44698  e21  44701  sspwtr  44792  pwtrVD  44795  pwtrrVD  44796  elex22VD  44810  tpid3gVD  44813  en3lplem2VD  44815  imbi12VD  44844  truniALTVD  44849  trintALTVD  44851  onfrALTlem3VD  44858  onfrALTlem2VD  44860  ax6e2eqVD  44878  ax6e2ndeqVD  44880  sb5ALTVD  44884
  Copyright terms: Public domain W3C validator