Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e22 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e22.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e22.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e22.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e22 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e22.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | e22.2 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
3 | e22.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜒 → (𝜒 → (𝜃 → 𝜏))) |
5 | 1, 1, 2, 4 | e222 42145 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 42086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-vd2 42087 |
This theorem is referenced by: e22an 42181 e02 42206 e12 42233 e20 42236 e21 42239 sspwtr 42330 pwtrVD 42333 pwtrrVD 42334 elex22VD 42348 tpid3gVD 42351 en3lplem2VD 42353 imbi12VD 42382 truniALTVD 42387 trintALTVD 42389 onfrALTlem3VD 42396 onfrALTlem2VD 42398 ax6e2eqVD 42416 ax6e2ndeqVD 42418 sb5ALTVD 42422 |
Copyright terms: Public domain | W3C validator |