Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e33an Structured version   Visualization version   GIF version

Theorem e33an 42325
Description: Conjunction form of e33 42324. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e33an.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e33an.2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
e33an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
e33an (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )

Proof of Theorem e33an
StepHypRef Expression
1 e33an.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 e33an.2 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
3 e33an.3 . . 3 ((𝜃𝜏) → 𝜂)
43ex 413 . 2 (𝜃 → (𝜏𝜂))
51, 2, 4e33 42324 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  (   wvd3 42177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-vd3 42180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator