Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e33 Structured version   Visualization version   GIF version

Theorem e33 42243
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e33.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e33.2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
e33.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
e33 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )

Proof of Theorem e33
StepHypRef Expression
1 e33.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 e33.2 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
3 e33.3 . . 3 (𝜃 → (𝜏𝜂))
43a1i 11 . 2 (𝜃 → (𝜃 → (𝜏𝜂)))
51, 1, 2, 4e333 42242 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd3 42099
This theorem is referenced by:  e33an  42244  e3  42246  e03  42249  e30  42253  e13  42257  e31  42260  e23  42264  e32  42267  truniALTVD  42387  trintALTVD  42389  onfrALTlem2VD  42398
  Copyright terms: Public domain W3C validator