Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e33 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e33.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
e33.2 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
e33.3 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
e33 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e33.1 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
2 | e33.2 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | |
3 | e33.3 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜃 → (𝜃 → (𝜏 → 𝜂))) |
5 | 1, 1, 2, 4 | e333 42353 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd3 42207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-vd3 42210 |
This theorem is referenced by: e33an 42355 e3 42357 e03 42360 e30 42364 e13 42368 e31 42371 e23 42375 e32 42378 truniALTVD 42498 trintALTVD 42500 onfrALTlem2VD 42509 |
Copyright terms: Public domain | W3C validator |