Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e33 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e33.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
e33.2 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
e33.3 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
e33 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e33.1 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
2 | e33.2 | . 2 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | |
3 | e33.3 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜃 → (𝜃 → (𝜏 → 𝜂))) |
5 | 1, 1, 2, 4 | e333 42242 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd3 42096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-vd3 42099 |
This theorem is referenced by: e33an 42244 e3 42246 e03 42249 e30 42253 e13 42257 e31 42260 e23 42264 e32 42267 truniALTVD 42387 trintALTVD 42389 onfrALTlem2VD 42398 |
Copyright terms: Public domain | W3C validator |