MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase3ad Structured version   Visualization version   GIF version

Theorem ecase3ad 1033
Description: Deduction for elimination by cases. (Contributed by NM, 24-May-2013.) (Proof shortened by Wolf Lammen, 20-Sep-2024.)
Hypotheses
Ref Expression
ecase3ad.1 (𝜑 → (𝜓𝜃))
ecase3ad.2 (𝜑 → (𝜒𝜃))
ecase3ad.3 (𝜑 → ((¬ 𝜓 ∧ ¬ 𝜒) → 𝜃))
Assertion
Ref Expression
ecase3ad (𝜑𝜃)

Proof of Theorem ecase3ad
StepHypRef Expression
1 ecase3ad.1 . . 3 (𝜑 → (𝜓𝜃))
21imp 407 . 2 ((𝜑𝜓) → 𝜃)
3 ecase3ad.2 . . 3 (𝜑 → (𝜒𝜃))
43imp 407 . 2 ((𝜑𝜒) → 𝜃)
5 ecase3ad.3 . . 3 (𝜑 → ((¬ 𝜓 ∧ ¬ 𝜒) → 𝜃))
65imp 407 . 2 ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃)
72, 4, 6pm2.61ddan 811 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator