![]() |
Metamath
Proof Explorer Theorem List (p. 11 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28468) |
![]() (28469-29993) |
![]() (29994-44273) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pm5.62 1001 | Theorem *5.62 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 21-Jun-2005.) |
⊢ (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)) | ||
Theorem | pm5.63 1002 | Theorem *5.63 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
⊢ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓))) | ||
Theorem | niabn 1003 | Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 → ((𝜒 ∧ 𝜓) ↔ ¬ 𝜑)) | ||
Theorem | ninba 1004 | Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 → (¬ 𝜑 ↔ (𝜒 ∧ 𝜓))) | ||
Theorem | pm4.43 1005 | Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
⊢ (𝜑 ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ ¬ 𝜓))) | ||
Theorem | pm4.82 1006 | Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) | ||
Theorem | pm4.83 1007 | Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) | ||
Theorem | pclem6 1008 | Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Nov-2012.) |
⊢ ((𝜑 ↔ (𝜓 ∧ ¬ 𝜑)) → ¬ 𝜓) | ||
Theorem | bigolden 1009 | Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.) |
⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) | ||
Theorem | pm5.71 1010 | Theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) |
⊢ ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) | ||
Theorem | pm5.75 1011 | Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.) (Proof shortened by Kyle Wyonch, 12-Feb-2021.) |
⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) | ||
Theorem | ecase2d 1012 | Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Dec-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) & ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | ecase3 1013 | Inference for elimination by cases. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
⊢ (𝜑 → 𝜒) & ⊢ (𝜓 → 𝜒) & ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | ecase 1014 | Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
⊢ (¬ 𝜑 → 𝜒) & ⊢ (¬ 𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | ecase3d 1015 | Deduction for elimination by cases. (Contributed by NM, 2-May-1996.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (¬ (𝜓 ∨ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | ecased 1016 | Deduction for elimination by cases. (Contributed by NM, 8-Oct-2012.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜃)) & ⊢ (𝜑 → (¬ 𝜒 → 𝜃)) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | ecase3ad 1017 | Deduction for elimination by cases. (Contributed by NM, 24-May-2013.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → ((¬ 𝜓 ∧ ¬ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | ccase 1018 | Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜏) & ⊢ ((𝜒 ∧ 𝜓) → 𝜏) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) | ||
Theorem | ccased 1019 | Deduction for combining cases. (Contributed by NM, 9-May-2004.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) & ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) | ||
Theorem | ccase2 1020 | Inference for combining cases. (Contributed by NM, 29-Jul-1999.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜏) & ⊢ (𝜒 → 𝜏) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) | ||
Theorem | 4cases 1021 | Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) & ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | 4casesdan 1022 | Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) & ⊢ ((𝜑 ∧ (𝜓 ∧ ¬ 𝜒)) → 𝜃) & ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ 𝜒)) → 𝜃) & ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | cases 1023 | Case disjunction according to the value of 𝜑. (Contributed by NM, 25-Apr-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) | ||
Theorem | dedlem0a 1024 | Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
⊢ (𝜑 → (𝜓 ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) | ||
Theorem | dedlem0b 1025 | Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) |
⊢ (¬ 𝜑 → (𝜓 ↔ ((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)))) | ||
Theorem | dedlema 1026 | Lemma for weak deduction theorem. See also ifptru 1054. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | ||
Theorem | dedlemb 1027 | Lemma for weak deduction theorem. See also ifpfal 1055. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | ||
Theorem | cases2 1028 | Case disjunction according to the value of 𝜑. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by Wolf Lammen, 28-Feb-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | ||
Theorem | cases2ALT 1029 | Alternate proof of cases2 1028, not using dedlema 1026 or dedlemb 1027. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by Wolf Lammen, 2-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | ||
Theorem | dfbi3 1030 | An alternate definition of the biconditional. Theorem *5.23 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) (Proof shortened by NM, 29-Oct-2021.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | ||
Theorem | pm5.24 1031 | Theorem *5.24 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | ||
Theorem | 4exmid 1032 | The disjunction of the four possible combinations of two wffs and their negations is always true. A four-way excluded middle (see exmid 878). (Contributed by David Abernethy, 28-Jan-2014.) (Proof shortened by NM, 29-Oct-2021.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | ||
Theorem | consensus 1033 | The consensus theorem. This theorem and its dual (with ∨ and ∧ interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term (𝜓 ∧ 𝜒) on the left-hand side is redundant. (Contributed by NM, 16-May-2003.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 20-Jan-2013.) |
⊢ ((((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | ||
Theorem | pm4.42 1034 | Theorem *4.42 of [WhiteheadRussell] p. 119. See also ifpid 1056. (Contributed by Roy F. Longton, 21-Jun-2005.) |
⊢ (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓))) | ||
Theorem | prlem1 1035 | A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
⊢ (𝜑 → (𝜂 ↔ 𝜒)) & ⊢ (𝜓 → ¬ 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) | ||
Theorem | prlem2 1036 | A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)))) | ||
Theorem | oplem1 1037 | A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → (𝜃 ∨ 𝜏)) & ⊢ (𝜓 ↔ 𝜃) & ⊢ (𝜒 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | dn1 1038 | A single axiom for Boolean algebra known as DN1. See McCune, Veroff, Fitelson, Harris, Feist, Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. (https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf). (Contributed by Jeff Hankins, 3-Jul-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
⊢ (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) | ||
Theorem | bianir 1039 | A closed form of mpbir 223, analogous to pm2.27 42 (assertion). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Roger Witte, 17-Aug-2020.) |
⊢ ((𝜑 ∧ (𝜓 ↔ 𝜑)) → 𝜓) | ||
Theorem | jaoi2 1040 | Inference removing a negated conjunct in a disjunction of an antecedent if this conjunct is part of the disjunction. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) |
⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜒)) → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒) → 𝜓) | ||
Theorem | jaoi3 1041 | Inference separating a disjunct of an antecedent. (Contributed by Alexander van der Vekens, 25-May-2018.) |
⊢ (𝜑 → 𝜓) & ⊢ ((¬ 𝜑 ∧ 𝜒) → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒) → 𝜓) | ||
Theorem | ornld 1042 | Selecting one statement from a disjunction if one of the disjuncted statements is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
⊢ (𝜑 → (((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | ||
This subsection introduces the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1044). It is the analogue for propositions of the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4345). | ||
Syntax | wif 1043 | Extend class notation to include the conditional operator for propositions. |
wff if-(𝜑, 𝜓, 𝜒) | ||
Definition | df-ifp 1044 |
Definition of the conditional operator for propositions. The expression
if-(𝜑,
𝜓, 𝜒) is read "if 𝜑 then
𝜓
else 𝜒".
See dfifp2 1045, dfifp3 1046, dfifp4 1047, dfifp5 1048, dfifp6 1049 and dfifp7 1050 for
alternate definitions.
This definition (in the form of dfifp2 1045) appears in Section II.24 of [Church] p. 129 (Definition D12 page 132), where it is called "conditioned disjunction". Church's [𝜓, 𝜑, 𝜒] corresponds to our if-(𝜑, 𝜓, 𝜒) (note the permutation of the first two variables). This form was chosen as the definition rather than dfifp2 1045 for compatibility with intuitionistic logic development: with this form, it is clear that if-(𝜑, 𝜓, 𝜒) implies decidability of 𝜑, which is most often what is wanted. Church uses the conditional operator as an intermediate step to prove completeness of some systems of connectives. The first result is that the system {if-, ⊤, ⊥} is complete: for the induction step, consider a formula of n+1 variables; single out one variable, say 𝜑; when one sets 𝜑 to True (resp. False), then what remains is a formula of n variables, so by the induction hypothesis it is equivalent to a formula using only the connectives if-, ⊤, ⊥, say 𝜓 (resp. 𝜒); therefore, the formula if-(𝜑, 𝜓, 𝜒) is equivalent to the initial formula of n+1 variables. Now, since { → , ¬ } and similar systems suffice to express the connectives if-, ⊤, ⊥, they are also complete. (Contributed by BJ, 22-Jun-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | ||
Theorem | dfifp2 1045 | Alternate definition of the conditional operator for propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒". This version of the definition uses only primitive symbols (→ , ¬ , ∀). This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 1044). (Contributed by BJ, 22-Jun-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | ||
Theorem | dfifp3 1046 | Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) | ||
Theorem | dfifp4 1047 | Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | ||
Theorem | dfifp5 1048 | Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒))) | ||
Theorem | dfifp6 1049 | Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑))) | ||
Theorem | dfifp7 1050 | Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜒 → 𝜑) → (𝜑 ∧ 𝜓))) | ||
Theorem | anifp 1051 | The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 1052. (Contributed by BJ, 30-Sep-2019.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | ifpor 1052 | The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp 1051. (Contributed by BJ, 1-Oct-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) → (𝜓 ∨ 𝜒)) | ||
Theorem | ifpn 1053 | Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) | ||
Theorem | ifptru 1054 | Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 4350. This is essentially dedlema 1026. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) | ||
Theorem | ifpfal 1055 | Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4353. This is essentially dedlemb 1027. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.) |
⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) | ||
Theorem | ifpid 1056 | Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid 4383. This is essentially pm4.42 1034. (Contributed by BJ, 20-Sep-2019.) |
⊢ (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓) | ||
Theorem | casesifp 1057 | Version of cases 1023 expressed using if-. Case disjunction according to the value of 𝜑. One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru 1054 and ifpfal 1055. (Contributed by BJ, 20-Sep-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) | ||
Theorem | ifpbi123d 1058 | Equality deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) |
⊢ (𝜑 → (𝜓 ↔ 𝜏)) & ⊢ (𝜑 → (𝜒 ↔ 𝜂)) & ⊢ (𝜑 → (𝜃 ↔ 𝜁)) ⇒ ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁))) | ||
Theorem | ifpimpda 1059 | Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 27-Feb-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) ⇒ ⊢ (𝜑 → if-(𝜓, 𝜒, 𝜃)) | ||
Theorem | 1fpid3 1060 | The value of the conditional operator for propositions is its third argument if the first and second argument imply the third argument. (Contributed by AV, 4-Apr-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (if-(𝜑, 𝜓, 𝜒) → 𝜒) | ||
This subsection contains a few results related to the weak deduction theorem in propositional calculus. For the weak deduction theorem in set theory, see the section beginning with dedth 4400. For more information on the weak deduction theorem, see the Weak Deduction Theorem page mmdeduction.html. | ||
Theorem | elimh 1061 | Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 26-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023.) |
⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜏 ↔ 𝜒)) & ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜓) → (𝜏 ↔ 𝜃)) & ⊢ 𝜃 ⇒ ⊢ 𝜏 | ||
Theorem | elimhOLD 1062 | Obsolete version of elimh 1061 as of 27-Apr-2023. Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 26-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜒 ↔ 𝜏)) & ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜓) → (𝜃 ↔ 𝜏)) & ⊢ 𝜃 ⇒ ⊢ 𝜏 | ||
Theorem | dedt 1063 | The weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 26-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023.) |
⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜏 ↔ 𝜃)) & ⊢ 𝜏 ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | dedtOLD 1064 | Obsolete version of dedt 1063 as of 27-Apr-2023. The weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 26-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜃 ↔ 𝜏)) & ⊢ 𝜏 ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | con3ALT 1065 | Proof of con3 151 from its associated inference con3i 152 that illustrates the use of the weak deduction theorem dedt 1063. (Contributed by NM, 27-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) Revised dedt 1063 and elimh 1061. (Revised by Steven Nguyen, 27-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | con3ALTOLD 1066 | Obsolete version of con3ALT 1065 as of 27-Apr-2023. Proof of con3 151 from its associated inference con3i 152 that illustrates the use of the weak deduction theorem dedt 1063. (Contributed by NM, 27-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Syntax | w3o 1067 | Extend wff definition to include three-way disjunction ('or'). |
wff (𝜑 ∨ 𝜓 ∨ 𝜒) | ||
Syntax | w3a 1068 | Extend wff definition to include three-way conjunction ('and'). |
wff (𝜑 ∧ 𝜓 ∧ 𝜒) | ||
Definition | df-3or 1069 | Define disjunction ('or') of three wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 905. (Contributed by NM, 8-Apr-1994.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
Definition | df-3an 1070 | Define conjunction ('and') of three wff's. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 461. (Contributed by NM, 8-Apr-1994.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | ||
Theorem | 3orass 1071 | Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | ||
Theorem | 3orel1 1072 | Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) |
⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜓 ∨ 𝜒))) | ||
Theorem | 3orrot 1073 | Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | ||
Theorem | 3orcoma 1074 | Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) | ||
Theorem | 3orcomb 1075 | Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) (Proof shortened by Wolf Lammen, 8-Apr-2022.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | ||
Theorem | 3anass 1076 | Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | ||
Theorem | 3anan12 1077 | Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1079 by Wolf Lammen, 5-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | ||
Theorem | 3anan32 1078 | Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | 3ancoma 1079 | Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | ||
Theorem | 3ancomb 1080 | Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1081 by Wolf Lammen, 9-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | ||
Theorem | 3anrot 1081 | Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | ||
Theorem | 3anrev 1082 | Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) | ||
Theorem | anandi3 1083 | Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | ||
Theorem | anandi3r 1084 | Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓))) | ||
Theorem | 3an4anass 1085 | Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | 3ioran 1086 | Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.) |
⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) | ||
Theorem | 3ianor 1087 | Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Revised by Wolf Lammen, 8-Apr-2022.) |
⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) | ||
Theorem | 3anor 1088 | Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Wolf Lammen, 8-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) | ||
Theorem | 3oran 1089 | Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) | ||
Theorem | 3impa 1090 | Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3imp 1091 by Wolf Lammen, 20-Jun-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3imp 1091 | Importation inference. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jun-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3imp31 1092 | The importation inference 3imp 1091 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) | ||
Theorem | 3imp231 1093 | Importation inference. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) | ||
Theorem | 3imp21 1094 | The importation inference 3imp 1091 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1103 by Wolf Lammen, 23-Jun-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | 3impb 1095 | Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3impib 1096 | Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3impia 1097 | Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3expa 1098 | Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3exp 1099 and pm3.2an3 1320 by Wolf Lammen, 22-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | 3exp 1099 | Exportation inference. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | 3expb 1100 | Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |