Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecased Structured version   Visualization version   GIF version

Theorem ecased 1032
 Description: Deduction for elimination by cases. (Contributed by NM, 8-Oct-2012.)
Hypotheses
Ref Expression
ecased.1 (𝜑 → (¬ 𝜓𝜃))
ecased.2 (𝜑 → (¬ 𝜒𝜃))
ecased.3 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
ecased (𝜑𝜃)

Proof of Theorem ecased
StepHypRef Expression
1 ecased.1 . 2 (𝜑 → (¬ 𝜓𝜃))
2 ecased.2 . 2 (𝜑 → (¬ 𝜒𝜃))
3 pm3.11 991 . . 3 (¬ (¬ 𝜓 ∨ ¬ 𝜒) → (𝜓𝜒))
4 ecased.3 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
53, 4syl5 34 . 2 (𝜑 → (¬ (¬ 𝜓 ∨ ¬ 𝜒) → 𝜃))
61, 2, 5ecase3d 1031 1 (𝜑𝜃)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   ∨ wo 845 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846 This theorem is referenced by:  ecase3ad  1033  itgsplitioo  24530  rolle  24682  dalaw  37455
 Copyright terms: Public domain W3C validator