Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ddan | Structured version Visualization version GIF version |
Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.) |
Ref | Expression |
---|---|
pm2.61ddan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
pm2.61ddan.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
pm2.61ddan.3 | ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
pm2.61ddan | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ddan.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
2 | pm2.61ddan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | 2 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜒) → 𝜃) |
4 | pm2.61ddan.3 | . . . 4 ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) | |
5 | 4 | anassrs 468 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒) → 𝜃) |
6 | 3, 5 | pm2.61dan 810 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) |
7 | 1, 6 | pm2.61dan 810 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ecase3ad 1033 lgsdir2 26478 cdlemg24 38702 |
Copyright terms: Public domain | W3C validator |