Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee020 Structured version   Visualization version   GIF version

Theorem ee020 42266
Description: e020 42265 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee020.1 𝜑
ee020.2 (𝜓 → (𝜒𝜃))
ee020.3 𝜏
ee020.4 (𝜑 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee020 (𝜓 → (𝜒𝜂))

Proof of Theorem ee020
StepHypRef Expression
1 ee020.1 . . . 4 𝜑
21a1i 11 . . 3 (𝜒𝜑)
32a1i 11 . 2 (𝜓 → (𝜒𝜑))
4 ee020.2 . 2 (𝜓 → (𝜒𝜃))
5 ee020.3 . . . 4 𝜏
65a1i 11 . . 3 (𝜒𝜏)
76a1i 11 . 2 (𝜓 → (𝜒𝜏))
8 ee020.4 . 2 (𝜑 → (𝜃 → (𝜏𝜂)))
93, 4, 7, 8ee222 42122 1 (𝜓 → (𝜒𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator