Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e020 Structured version   Visualization version   GIF version

Theorem e020 42235
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e020.1 𝜑
e020.2 (   𝜓   ,   𝜒   ▶   𝜃   )
e020.3 𝜏
e020.4 (𝜑 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
e020 (   𝜓   ,   𝜒   ▶   𝜂   )

Proof of Theorem e020
StepHypRef Expression
1 e020.1 . . 3 𝜑
21vd02 42188 . 2 (   𝜓   ,   𝜒   ▶   𝜑   )
3 e020.2 . 2 (   𝜓   ,   𝜒   ▶   𝜃   )
4 e020.3 . . 3 𝜏
54vd02 42188 . 2 (   𝜓   ,   𝜒   ▶   𝜏   )
6 e020.4 . 2 (𝜑 → (𝜃 → (𝜏𝜂)))
72, 3, 5, 6e222 42226 1 (   𝜓   ,   𝜒   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 42167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd2 42168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator