Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ee21an | Structured version Visualization version GIF version |
Description: e21an 41811 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ee21an.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
ee21an.2 | ⊢ (𝜑 → 𝜃) |
ee21an.3 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
ee21an | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ee21an.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ee21an.2 | . 2 ⊢ (𝜑 → 𝜃) | |
3 | ee21an.3 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 417 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) |
5 | 1, 2, 4 | syl6ci 71 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |