| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6ci.2 | ⊢ (𝜑 → 𝜃) |
| syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mtord 879 reu6 3683 axprlem3OLD 5364 ordelord 6324 f1dmex 7884 soseq 8084 omeulem2 8493 2pwuninel 9040 isumrpcl 15742 kqfvima 23638 caubl 25228 nbupgr 29315 nbumgrvtx 29317 umgr2adedgspth 29919 btwnconn1lem12 36111 omabs2 43344 sbcim2g 44550 ee21an 44743 |
| Copyright terms: Public domain | W3C validator |