![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
Ref | Expression |
---|---|
syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ci.2 | ⊢ (𝜑 → 𝜃) |
syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mtord 878 reu6 3748 axprlem3 5443 ordelord 6417 f1dmex 7997 soseq 8200 omeulem2 8639 2pwuninel 9198 isumrpcl 15891 kqfvima 23759 caubl 25361 nbupgr 29379 nbumgrvtx 29381 umgr2adedgspth 29981 btwnconn1lem12 36062 omabs2 43294 sbcim2g 44509 ee21an 44703 |
Copyright terms: Public domain | W3C validator |