| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6ci.2 | ⊢ (𝜑 → 𝜃) |
| syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mtord 879 reu6 3714 axprlem3OLD 5403 ordelord 6379 f1dmex 7960 soseq 8163 omeulem2 8600 2pwuninel 9151 isumrpcl 15864 kqfvima 23673 caubl 25265 nbupgr 29328 nbumgrvtx 29330 umgr2adedgspth 29935 btwnconn1lem12 36121 omabs2 43323 sbcim2g 44530 ee21an 44723 |
| Copyright terms: Public domain | W3C validator |