MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6ci Structured version   Visualization version   GIF version

Theorem syl6ci 71
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
Hypotheses
Ref Expression
syl6ci.1 (𝜑 → (𝜓𝜒))
syl6ci.2 (𝜑𝜃)
syl6ci.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
syl6ci (𝜑 → (𝜓𝜏))

Proof of Theorem syl6ci
StepHypRef Expression
1 syl6ci.1 . 2 (𝜑 → (𝜓𝜒))
2 syl6ci.2 . . 3 (𝜑𝜃)
32a1d 25 . 2 (𝜑 → (𝜓𝜃))
4 syl6ci.3 . 2 (𝜒 → (𝜃𝜏))
51, 3, 4syl6c 70 1 (𝜑 → (𝜓𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mtord  879  reu6  3697  axprlem3OLD  5383  ordelord  6354  f1dmex  7935  soseq  8138  omeulem2  8547  2pwuninel  9096  isumrpcl  15809  kqfvima  23617  caubl  25208  nbupgr  29271  nbumgrvtx  29273  umgr2adedgspth  29878  btwnconn1lem12  36086  omabs2  43321  sbcim2g  44528  ee21an  44721
  Copyright terms: Public domain W3C validator