| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6ci.2 | ⊢ (𝜑 → 𝜃) |
| syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mtord 879 reu6 3680 axprlem3OLD 5368 ordelord 6334 f1dmex 7895 soseq 8095 omeulem2 8504 2pwuninel 9051 isumrpcl 15756 kqfvima 23651 caubl 25241 nbupgr 29329 nbumgrvtx 29331 umgr2adedgspth 29933 btwnconn1lem12 36149 omabs2 43430 sbcim2g 44636 ee21an 44829 |
| Copyright terms: Public domain | W3C validator |