| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6ci.2 | ⊢ (𝜑 → 𝜃) |
| syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mtord 879 reu6 3699 axprlem3OLD 5385 ordelord 6356 f1dmex 7937 soseq 8140 omeulem2 8549 2pwuninel 9101 isumrpcl 15815 kqfvima 23623 caubl 25214 nbupgr 29277 nbumgrvtx 29279 umgr2adedgspth 29884 btwnconn1lem12 36081 omabs2 43314 sbcim2g 44521 ee21an 44714 |
| Copyright terms: Public domain | W3C validator |