![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
Ref | Expression |
---|---|
syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ci.2 | ⊢ (𝜑 → 𝜃) |
syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mtord 879 reu6 3723 axprlem3 5424 ordelord 6387 f1dmex 7943 soseq 8145 omeulem2 8583 2pwuninel 9132 isumrpcl 15789 kqfvima 23234 caubl 24825 nbupgr 28632 nbumgrvtx 28634 umgr2adedgspth 29233 btwnconn1lem12 35101 omabs2 42130 sbcim2g 43347 ee21an 43541 |
Copyright terms: Public domain | W3C validator |