| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl6ci.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6ci.2 | ⊢ (𝜑 → 𝜃) |
| syl6ci.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6ci | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6ci.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6ci.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | syl6ci.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mtord 879 reu6 3697 axprlem3OLD 5383 ordelord 6354 f1dmex 7935 soseq 8138 omeulem2 8547 2pwuninel 9096 isumrpcl 15809 kqfvima 23617 caubl 25208 nbupgr 29271 nbumgrvtx 29273 umgr2adedgspth 29878 btwnconn1lem12 36086 omabs2 43321 sbcim2g 44528 ee21an 44721 |
| Copyright terms: Public domain | W3C validator |