MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6ci Structured version   Visualization version   GIF version

Theorem syl6ci 71
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
Hypotheses
Ref Expression
syl6ci.1 (𝜑 → (𝜓𝜒))
syl6ci.2 (𝜑𝜃)
syl6ci.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
syl6ci (𝜑 → (𝜓𝜏))

Proof of Theorem syl6ci
StepHypRef Expression
1 syl6ci.1 . 2 (𝜑 → (𝜓𝜒))
2 syl6ci.2 . . 3 (𝜑𝜃)
32a1d 25 . 2 (𝜑 → (𝜓𝜃))
4 syl6ci.3 . 2 (𝜒 → (𝜃𝜏))
51, 3, 4syl6c 70 1 (𝜑 → (𝜓𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mtord  878  reu6  3748  axprlem3  5443  ordelord  6417  f1dmex  7997  soseq  8200  omeulem2  8639  2pwuninel  9198  isumrpcl  15891  kqfvima  23759  caubl  25361  nbupgr  29379  nbumgrvtx  29381  umgr2adedgspth  29981  btwnconn1lem12  36062  omabs2  43294  sbcim2g  44509  ee21an  44703
  Copyright terms: Public domain W3C validator