MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6ci Structured version   Visualization version   GIF version

Theorem syl6ci 71
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
Hypotheses
Ref Expression
syl6ci.1 (𝜑 → (𝜓𝜒))
syl6ci.2 (𝜑𝜃)
syl6ci.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
syl6ci (𝜑 → (𝜓𝜏))

Proof of Theorem syl6ci
StepHypRef Expression
1 syl6ci.1 . 2 (𝜑 → (𝜓𝜒))
2 syl6ci.2 . . 3 (𝜑𝜃)
32a1d 25 . 2 (𝜑 → (𝜓𝜃))
4 syl6ci.3 . 2 (𝜒 → (𝜃𝜏))
51, 3, 4syl6c 70 1 (𝜑 → (𝜓𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mtord  879  reu6  3714  axprlem3OLD  5403  ordelord  6379  f1dmex  7960  soseq  8163  omeulem2  8600  2pwuninel  9151  isumrpcl  15864  kqfvima  23673  caubl  25265  nbupgr  29328  nbumgrvtx  29330  umgr2adedgspth  29935  btwnconn1lem12  36121  omabs2  43323  sbcim2g  44530  ee21an  44723
  Copyright terms: Public domain W3C validator