Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e333 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e333.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
e333.2 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
e333.3 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
e333.4 | ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) |
Ref | Expression |
---|---|
e333 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e333.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | |
2 | 1 | dfvd3i 42101 | . . . . . 6 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
3 | 2 | 3imp 1109 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
4 | e333.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
5 | 4 | dfvd3i 42101 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
6 | 5 | 3imp 1109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
7 | e333.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | |
8 | 7 | dfvd3i 42101 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
9 | 8 | 3imp 1109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
10 | e333.4 | . . . . . . 7 ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜂 → 𝜁))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜂 → 𝜁)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜁)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜁) |
15 | 14 | 3exp 1117 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) |
16 | 15 | dfvd3ir 42102 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ( wvd3 42096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-vd3 42099 |
This theorem is referenced by: e33 42243 e123 42271 |
Copyright terms: Public domain | W3C validator |