Proof of Theorem ee233
Step | Hyp | Ref
| Expression |
1 | | ee233.3 |
. . . . 5
⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) |
2 | | ee233.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
3 | | ee233.1 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | | ee233.4 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) |
5 | 3, 4 | syl6 35 |
. . . . . . . . . 10
⊢ (𝜑 → (𝜓 → (𝜏 → (𝜂 → 𝜁)))) |
6 | 5 | com3r 87 |
. . . . . . . . 9
⊢ (𝜏 → (𝜑 → (𝜓 → (𝜂 → 𝜁)))) |
7 | 2, 6 | syl8 76 |
. . . . . . . 8
⊢ (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁)))))) |
8 | | pm2.43cbi 42027 |
. . . . . . . 8
⊢ ((𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁)))))) ↔ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁)))))) |
9 | 7, 8 | mpbi 229 |
. . . . . . 7
⊢ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁))))) |
10 | | pm2.43cbi 42027 |
. . . . . . 7
⊢ ((𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁))))) ↔ (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁))))) |
11 | 9, 10 | mpbi 229 |
. . . . . 6
⊢ (𝜃 → (𝜑 → (𝜓 → (𝜂 → 𝜁)))) |
12 | 11 | com14 96 |
. . . . 5
⊢ (𝜂 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))) |
13 | 1, 12 | syl8 76 |
. . . 4
⊢ (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))))) |
14 | | pm2.43cbi 42027 |
. . . 4
⊢ ((𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))))) ↔ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))))) |
15 | 13, 14 | mpbi 229 |
. . 3
⊢ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁))))) |
16 | | pm2.43cbi 42027 |
. . 3
⊢ ((𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁))))) ↔ (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁))))) |
17 | 15, 16 | mpbi 229 |
. 2
⊢ (𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))) |
18 | | pm2.43cbi 42027 |
. 2
⊢ ((𝜃 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))) ↔ (𝜑 → (𝜓 → (𝜃 → 𝜁)))) |
19 | 17, 18 | mpbi 229 |
1
⊢ (𝜑 → (𝜓 → (𝜃 → 𝜁))) |