Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee233 Structured version   Visualization version   GIF version

Theorem ee233 42028
Description: Non-virtual deduction form of e233 42274. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑 → (𝜓𝜒))
h2:: (𝜑 → (𝜓 → (𝜃𝜏)))
h3:: (𝜑 → (𝜓 → (𝜃𝜂)))
h4:: (𝜒 → (𝜏 → (𝜂𝜁)))
5:1,4: (𝜑 → (𝜓 → (𝜏 → (𝜂𝜁))) )
6:5: (𝜏 → (𝜑 → (𝜓 → (𝜂𝜁))) )
7:2,6: (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))))
8:7: (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 𝜁)))))
9:8: (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))) )
10:9: (𝜑 → (𝜓 → (𝜃 → (𝜂𝜁))) )
11:10: (𝜂 → (𝜑 → (𝜓 → (𝜃𝜁))) )
12:3,11: (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))))
13:12: (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 𝜁)))))
14:13: (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))) )
qed:14: (𝜑 → (𝜓 → (𝜃𝜁)))
Hypotheses
Ref Expression
ee233.1 (𝜑 → (𝜓𝜒))
ee233.2 (𝜑 → (𝜓 → (𝜃𝜏)))
ee233.3 (𝜑 → (𝜓 → (𝜃𝜂)))
ee233.4 (𝜒 → (𝜏 → (𝜂𝜁)))
Assertion
Ref Expression
ee233 (𝜑 → (𝜓 → (𝜃𝜁)))

Proof of Theorem ee233
StepHypRef Expression
1 ee233.3 . . . . 5 (𝜑 → (𝜓 → (𝜃𝜂)))
2 ee233.2 . . . . . . . . 9 (𝜑 → (𝜓 → (𝜃𝜏)))
3 ee233.1 . . . . . . . . . . 11 (𝜑 → (𝜓𝜒))
4 ee233.4 . . . . . . . . . . 11 (𝜒 → (𝜏 → (𝜂𝜁)))
53, 4syl6 35 . . . . . . . . . 10 (𝜑 → (𝜓 → (𝜏 → (𝜂𝜁))))
65com3r 87 . . . . . . . . 9 (𝜏 → (𝜑 → (𝜓 → (𝜂𝜁))))
72, 6syl8 76 . . . . . . . 8 (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))))
8 pm2.43cbi 42027 . . . . . . . 8 ((𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁)))))) ↔ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))))
97, 8mpbi 229 . . . . . . 7 (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁)))))
10 pm2.43cbi 42027 . . . . . . 7 ((𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))) ↔ (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁)))))
119, 10mpbi 229 . . . . . 6 (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))
1211com14 96 . . . . 5 (𝜂 → (𝜑 → (𝜓 → (𝜃𝜁))))
131, 12syl8 76 . . . 4 (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))))
14 pm2.43cbi 42027 . . . 4 ((𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁)))))) ↔ (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))))
1513, 14mpbi 229 . . 3 (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁)))))
16 pm2.43cbi 42027 . . 3 ((𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))) ↔ (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁)))))
1715, 16mpbi 229 . 2 (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))
18 pm2.43cbi 42027 . 2 ((𝜃 → (𝜑 → (𝜓 → (𝜃𝜁)))) ↔ (𝜑 → (𝜓 → (𝜃𝜁))))
1917, 18mpbi 229 1 (𝜑 → (𝜓 → (𝜃𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  truniALT  42050  onfrALTlem2  42055  e233  42274
  Copyright terms: Public domain W3C validator