| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑦 ∈ ∪ 𝐴) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑦 ∈ ∪ 𝐴)) |
| 3 | | eluni 4890 |
. . . . 5
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)) |
| 4 | 2, 3 | imbitrdi 251 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴))) |
| 5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ 𝑦) |
| 6 | 5 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ 𝑦)) |
| 7 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑦 ∈ 𝑞) |
| 8 | 7 | 2a1i 12 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑦 ∈ 𝑞))) |
| 9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
| 10 | 9 | 2a1i 12 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴))) |
| 11 | | rspsbc 3859 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 Tr 𝑥 → [𝑞 / 𝑥]Tr 𝑥)) |
| 12 | 11 | com12 32 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → (𝑞 ∈ 𝐴 → [𝑞 / 𝑥]Tr 𝑥)) |
| 13 | 10, 12 | syl6d 75 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → [𝑞 / 𝑥]Tr 𝑥))) |
| 14 | | trsbc 44493 |
. . . . . . . . . 10
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞)) |
| 15 | 14 | biimpd 229 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞)) |
| 16 | 10, 13, 15 | ee33 44474 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → Tr 𝑞))) |
| 17 | | trel 5248 |
. . . . . . . . 9
⊢ (Tr 𝑞 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞) → 𝑧 ∈ 𝑞)) |
| 18 | 17 | expdcom 414 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑞 → (Tr 𝑞 → 𝑧 ∈ 𝑞))) |
| 19 | 6, 8, 16, 18 | ee233 44472 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ 𝑞))) |
| 20 | | elunii 4892 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) |
| 21 | 20 | ex 412 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑞 → (𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴)) |
| 22 | 19, 10, 21 | ee33 44474 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
| 23 | 22 | alrimdv 1928 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
| 24 | | 19.23v 1941 |
. . . . 5
⊢
(∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) ↔ (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
| 25 | 23, 24 | imbitrdi 251 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
| 26 | 4, 25 | mpdd 43 |
. . 3
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
| 27 | 26 | alrimivv 1927 |
. 2
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
| 28 | | dftr2 5241 |
. 2
⊢ (Tr ∪ 𝐴
↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
| 29 | 27, 28 | sylibr 234 |
1
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∪ 𝐴) |