Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALT Structured version   Visualization version   GIF version

Theorem truniALT 44698
Description: The union of a class of transitive sets is transitive. Alternate proof of truni 5217. truniALT 44698 is truniALTVD 45034 without virtual deductions and was automatically derived from truniALTVD 45034 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truniALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
21a1i 11 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
3 eluni 4863 . . . . 5 (𝑦 𝐴 ↔ ∃𝑞(𝑦𝑞𝑞𝐴))
42, 3imbitrdi 251 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∃𝑞(𝑦𝑞𝑞𝐴)))
5 simpl 482 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
65a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
7 simpl 482 . . . . . . . . 9 ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)
872a1i 12 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)))
9 simpr 484 . . . . . . . . . 10 ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)
1092a1i 12 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)))
11 rspsbc 3826 . . . . . . . . . . 11 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
1211com12 32 . . . . . . . . . 10 (∀𝑥𝐴 Tr 𝑥 → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥))
1310, 12syl6d 75 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → [𝑞 / 𝑥]Tr 𝑥)))
14 trsbc 44697 . . . . . . . . . 10 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
1514biimpd 229 . . . . . . . . 9 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
1610, 13, 15ee33 44678 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → Tr 𝑞)))
17 trel 5210 . . . . . . . . 9 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expdcom 414 . . . . . . . 8 (𝑧𝑦 → (𝑦𝑞 → (Tr 𝑞𝑧𝑞)))
196, 8, 16, 18ee233 44676 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧𝑞)))
20 elunii 4865 . . . . . . . 8 ((𝑧𝑞𝑞𝐴) → 𝑧 𝐴)
2120ex 412 . . . . . . 7 (𝑧𝑞 → (𝑞𝐴𝑧 𝐴))
2219, 10, 21ee33 44678 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
2322alrimdv 1930 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
24 19.23v 1943 . . . . 5 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) ↔ (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
2523, 24imbitrdi 251 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
264, 25mpdd 43 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2726alrimivv 1929 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
28 dftr2 5204 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2927, 28sylibr 234 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1780  wcel 2113  wral 3048  [wsbc 3737   cuni 4860  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-sbc 3738  df-ss 3915  df-uni 4861  df-tr 5203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator