Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑦 ∈ ∪ 𝐴) |
2 | 1 | a1i 11 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑦 ∈ ∪ 𝐴)) |
3 | | eluni 4801 |
. . . . 5
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)) |
4 | 2, 3 | syl6ib 254 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴))) |
5 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ 𝑦) |
6 | 5 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ 𝑦)) |
7 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑦 ∈ 𝑞) |
8 | 7 | 2a1i 12 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑦 ∈ 𝑞))) |
9 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
10 | 9 | 2a1i 12 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴))) |
11 | | rspsbc 3785 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 Tr 𝑥 → [𝑞 / 𝑥]Tr 𝑥)) |
12 | 11 | com12 32 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → (𝑞 ∈ 𝐴 → [𝑞 / 𝑥]Tr 𝑥)) |
13 | 10, 12 | syl6d 75 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → [𝑞 / 𝑥]Tr 𝑥))) |
14 | | trsbc 41619 |
. . . . . . . . . 10
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞)) |
15 | 14 | biimpd 232 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞)) |
16 | 10, 13, 15 | ee33 41600 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → Tr 𝑞))) |
17 | | trel 5145 |
. . . . . . . . 9
⊢ (Tr 𝑞 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞) → 𝑧 ∈ 𝑞)) |
18 | 17 | expdcom 418 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑞 → (Tr 𝑞 → 𝑧 ∈ 𝑞))) |
19 | 6, 8, 16, 18 | ee233 41598 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ 𝑞))) |
20 | | elunii 4803 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) |
21 | 20 | ex 416 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑞 → (𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴)) |
22 | 19, 10, 21 | ee33 41600 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
23 | 22 | alrimdv 1930 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
24 | | 19.23v 1943 |
. . . . 5
⊢
(∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) ↔ (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
25 | 23, 24 | syl6ib 254 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴))) |
26 | 4, 25 | mpdd 43 |
. . 3
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
27 | 26 | alrimivv 1929 |
. 2
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
28 | | dftr2 5140 |
. 2
⊢ (Tr ∪ 𝐴
↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)) |
29 | 27, 28 | sylibr 237 |
1
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∪ 𝐴) |