Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALT Structured version   Visualization version   GIF version

Theorem truniALT 43983
Description: The union of a class of transitive sets is transitive. Alternate proof of truni 5283. truniALT 43983 is truniALTVD 44320 without virtual deductions and was automatically derived from truniALTVD 44320 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truniALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . 6 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
21a1i 11 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
3 eluni 4913 . . . . 5 (𝑦 𝐴 ↔ ∃𝑞(𝑦𝑞𝑞𝐴))
42, 3imbitrdi 250 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∃𝑞(𝑦𝑞𝑞𝐴)))
5 simpl 481 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
65a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
7 simpl 481 . . . . . . . . 9 ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)
872a1i 12 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)))
9 simpr 483 . . . . . . . . . 10 ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)
1092a1i 12 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)))
11 rspsbc 3872 . . . . . . . . . . 11 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
1211com12 32 . . . . . . . . . 10 (∀𝑥𝐴 Tr 𝑥 → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥))
1310, 12syl6d 75 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → [𝑞 / 𝑥]Tr 𝑥)))
14 trsbc 43982 . . . . . . . . . 10 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
1514biimpd 228 . . . . . . . . 9 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
1610, 13, 15ee33 43963 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → Tr 𝑞)))
17 trel 5276 . . . . . . . . 9 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expdcom 413 . . . . . . . 8 (𝑧𝑦 → (𝑦𝑞 → (Tr 𝑞𝑧𝑞)))
196, 8, 16, 18ee233 43961 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧𝑞)))
20 elunii 4915 . . . . . . . 8 ((𝑧𝑞𝑞𝐴) → 𝑧 𝐴)
2120ex 411 . . . . . . 7 (𝑧𝑞 → (𝑞𝐴𝑧 𝐴))
2219, 10, 21ee33 43963 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
2322alrimdv 1924 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
24 19.23v 1937 . . . . 5 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) ↔ (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
2523, 24imbitrdi 250 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
264, 25mpdd 43 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2726alrimivv 1923 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
28 dftr2 5269 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2927, 28sylibr 233 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531  wex 1773  wcel 2098  wral 3057  [wsbc 3776   cuni 4910  Tr wtr 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-v 3473  df-sbc 3777  df-in 3954  df-ss 3964  df-uni 4911  df-tr 5268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator