Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALT Structured version   Visualization version   GIF version

Theorem truniALT 44554
Description: The union of a class of transitive sets is transitive. Alternate proof of truni 5284. truniALT 44554 is truniALTVD 44891 without virtual deductions and was automatically derived from truniALTVD 44891 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truniALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
21a1i 11 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
3 eluni 4918 . . . . 5 (𝑦 𝐴 ↔ ∃𝑞(𝑦𝑞𝑞𝐴))
42, 3imbitrdi 251 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∃𝑞(𝑦𝑞𝑞𝐴)))
5 simpl 482 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
65a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
7 simpl 482 . . . . . . . . 9 ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)
872a1i 12 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑦𝑞)))
9 simpr 484 . . . . . . . . . 10 ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)
1092a1i 12 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑞𝐴)))
11 rspsbc 3891 . . . . . . . . . . 11 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
1211com12 32 . . . . . . . . . 10 (∀𝑥𝐴 Tr 𝑥 → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥))
1310, 12syl6d 75 . . . . . . . . 9 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → [𝑞 / 𝑥]Tr 𝑥)))
14 trsbc 44553 . . . . . . . . . 10 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
1514biimpd 229 . . . . . . . . 9 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
1610, 13, 15ee33 44534 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → Tr 𝑞)))
17 trel 5277 . . . . . . . . 9 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expdcom 414 . . . . . . . 8 (𝑧𝑦 → (𝑦𝑞 → (Tr 𝑞𝑧𝑞)))
196, 8, 16, 18ee233 44532 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧𝑞)))
20 elunii 4920 . . . . . . . 8 ((𝑧𝑞𝑞𝐴) → 𝑧 𝐴)
2120ex 412 . . . . . . 7 (𝑧𝑞 → (𝑞𝐴𝑧 𝐴))
2219, 10, 21ee33 44534 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
2322alrimdv 1929 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
24 19.23v 1942 . . . . 5 (∀𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴) ↔ (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴))
2523, 24imbitrdi 251 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)))
264, 25mpdd 43 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2726alrimivv 1928 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
28 dftr2 5270 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2927, 28sylibr 234 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1778  wcel 2108  wral 3061  [wsbc 3794   cuni 4915  Tr wtr 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-v 3483  df-sbc 3795  df-ss 3983  df-uni 4916  df-tr 5269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator