| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2559 ssorduni 7735 tz7.49 8390 nneneq 9147 dfac2b 10060 qreccl 12904 dvdsaddre2b 16253 cmpsub 23320 fclsopni 23935 nocvxminlem 27723 sumdmdlem2 32398 umgr2cycllem 35120 idinside 36065 axc11n11r 36664 isbasisrelowllem1 37336 isbasisrelowllem2 37337 dmqseqim2 38642 disjlem17 38784 prtlem15 38861 prtlem17 38862 ee3bir 44486 ee233 44502 onfrALTlem2 44529 ee223 44617 ee33VD 44861 ormkglobd 46866 rngccatidALTV 48253 ringccatidALTV 48287 |
| Copyright terms: Public domain | W3C validator |