| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2559 ssorduni 7735 tz7.49 8390 nneneq 9147 dfac2b 10060 qreccl 12904 dvdsaddre2b 16253 cmpsub 23263 fclsopni 23878 nocvxminlem 27665 sumdmdlem2 32321 umgr2cycllem 35100 idinside 36045 axc11n11r 36644 isbasisrelowllem1 37316 isbasisrelowllem2 37317 dmqseqim2 38622 disjlem17 38764 prtlem15 38841 prtlem17 38842 ee3bir 44466 ee233 44482 onfrALTlem2 44509 ee223 44597 ee33VD 44841 ormkglobd 46846 rngccatidALTV 48233 ringccatidALTV 48267 |
| Copyright terms: Public domain | W3C validator |