MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl8 Structured version   Visualization version   GIF version

Theorem syl8 76
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.)
Hypotheses
Ref Expression
syl8.1 (𝜑 → (𝜓 → (𝜒𝜃)))
syl8.2 (𝜃𝜏)
Assertion
Ref Expression
syl8 (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem syl8
StepHypRef Expression
1 syl8.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 syl8.2 . . 3 (𝜃𝜏)
32a1i 11 . 2 (𝜑 → (𝜃𝜏))
41, 3syl6d 75 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  a1ddd  80  com45  97  syl8ib  256  mo4  2559  ssorduni  7735  tz7.49  8390  nneneq  9147  dfac2b  10060  qreccl  12904  dvdsaddre2b  16253  cmpsub  23263  fclsopni  23878  nocvxminlem  27665  sumdmdlem2  32321  umgr2cycllem  35100  idinside  36045  axc11n11r  36644  isbasisrelowllem1  37316  isbasisrelowllem2  37317  dmqseqim2  38622  disjlem17  38764  prtlem15  38841  prtlem17  38842  ee3bir  44466  ee233  44482  onfrALTlem2  44509  ee223  44597  ee33VD  44841  ormkglobd  46846  rngccatidALTV  48233  ringccatidALTV  48267
  Copyright terms: Public domain W3C validator