Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 255 mo4 2566 ssorduni 7629 tz7.49 8276 nneneq 8992 nneneqOLD 9004 dfac2b 9886 qreccl 12709 dvdsaddre2b 16016 cmpsub 22551 fclsopni 23166 sumdmdlem2 30781 umgr2cycllem 33102 nocvxminlem 33972 idinside 34386 axc11n11r 34865 isbasisrelowllem1 35526 isbasisrelowllem2 35527 dmqseqim2 36769 prtlem15 36889 prtlem17 36890 ee3bir 42123 ee233 42139 onfrALTlem2 42166 ee223 42254 ee33VD 42499 rngccatidALTV 45547 ringccatidALTV 45610 |
Copyright terms: Public domain | W3C validator |