![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 255 mo4 2560 ssorduni 7768 tz7.49 8447 nneneq 9211 nneneqOLD 9223 dfac2b 10127 qreccl 12955 dvdsaddre2b 16252 cmpsub 22911 fclsopni 23526 nocvxminlem 27286 sumdmdlem2 31710 umgr2cycllem 34200 idinside 35131 axc11n11r 35653 isbasisrelowllem1 36328 isbasisrelowllem2 36329 dmqseqim2 37619 disjlem17 37761 prtlem15 37837 prtlem17 37838 ee3bir 43352 ee233 43368 onfrALTlem2 43395 ee223 43483 ee33VD 43728 rngccatidALTV 46972 ringccatidALTV 47035 |
Copyright terms: Public domain | W3C validator |