| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2565 ssorduni 7771 tz7.49 8457 nneneq 9218 dfac2b 10143 qreccl 12983 dvdsaddre2b 16324 cmpsub 23336 fclsopni 23951 nocvxminlem 27739 sumdmdlem2 32346 umgr2cycllem 35108 idinside 36048 axc11n11r 36647 isbasisrelowllem1 37319 isbasisrelowllem2 37320 dmqseqim2 38621 disjlem17 38763 prtlem15 38839 prtlem17 38840 ee3bir 44476 ee233 44492 onfrALTlem2 44519 ee223 44607 ee33VD 44851 ormkglobd 46852 rngccatidALTV 48195 ringccatidALTV 48229 |
| Copyright terms: Public domain | W3C validator |