![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2563 ssorduni 7797 tz7.49 8483 nneneq 9243 nneneqOLD 9255 dfac2b 10168 qreccl 13008 dvdsaddre2b 16340 cmpsub 23423 fclsopni 24038 nocvxminlem 27836 sumdmdlem2 32447 umgr2cycllem 35124 idinside 36065 axc11n11r 36665 isbasisrelowllem1 37337 isbasisrelowllem2 37338 dmqseqim2 38638 disjlem17 38780 prtlem15 38856 prtlem17 38857 ee3bir 44500 ee233 44516 onfrALTlem2 44543 ee223 44631 ee33VD 44876 rngccatidALTV 48115 ringccatidALTV 48149 |
Copyright terms: Public domain | W3C validator |