| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2561 ssorduni 7712 tz7.49 8364 nneneq 9115 dfac2b 10022 qreccl 12867 dvdsaddre2b 16218 cmpsub 23315 fclsopni 23930 nocvxminlem 27717 sumdmdlem2 32399 umgr2cycllem 35184 idinside 36128 axc11n11r 36727 isbasisrelowllem1 37399 isbasisrelowllem2 37400 dmqseqim2 38765 disjlem17 38907 prtlem15 38984 prtlem17 38985 ee3bir 44606 ee233 44622 onfrALTlem2 44649 ee223 44737 ee33VD 44981 ormkglobd 46983 rngccatidALTV 48382 ringccatidALTV 48416 |
| Copyright terms: Public domain | W3C validator |