| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2559 ssorduni 7715 tz7.49 8367 nneneq 9120 dfac2b 10025 qreccl 12870 dvdsaddre2b 16218 cmpsub 23285 fclsopni 23900 nocvxminlem 27688 sumdmdlem2 32363 umgr2cycllem 35117 idinside 36062 axc11n11r 36661 isbasisrelowllem1 37333 isbasisrelowllem2 37334 dmqseqim2 38639 disjlem17 38781 prtlem15 38858 prtlem17 38859 ee3bir 44481 ee233 44497 onfrALTlem2 44524 ee223 44612 ee33VD 44856 ormkglobd 46860 rngccatidALTV 48260 ringccatidALTV 48294 |
| Copyright terms: Public domain | W3C validator |