![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 257 mo4 2609 ssorduni 7363 tz7.49 7939 nneneq 8554 dfac2b 9409 qreccl 12222 dvdsaddre2b 15494 cmpsub 21696 fclsopni 22311 sumdmdlem2 29883 umgr2cycllem 31997 nocvxminlem 32858 idinside 33156 axc11n11r 33621 isbasisrelowllem1 34188 isbasisrelowllem2 34189 dmqseqim2 35443 prtlem15 35563 prtlem17 35564 ee3bir 40397 ee233 40413 onfrALTlem2 40440 ee223 40528 ee33VD 40773 rngccatidALTV 43760 ringccatidALTV 43823 |
Copyright terms: Public domain | W3C validator |