![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2569 ssorduni 7814 tz7.49 8501 nneneq 9272 nneneqOLD 9284 dfac2b 10200 qreccl 13034 dvdsaddre2b 16355 cmpsub 23429 fclsopni 24044 nocvxminlem 27840 sumdmdlem2 32451 umgr2cycllem 35108 idinside 36048 axc11n11r 36649 isbasisrelowllem1 37321 isbasisrelowllem2 37322 dmqseqim2 38613 disjlem17 38755 prtlem15 38831 prtlem17 38832 ee3bir 44474 ee233 44490 onfrALTlem2 44517 ee223 44605 ee33VD 44850 rngccatidALTV 47995 ringccatidALTV 48029 |
Copyright terms: Public domain | W3C validator |