Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
syl8.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: a1ddd 80 com45 97 syl8ib 255 mo4 2566 ssorduni 7606 tz7.49 8246 nneneq 8896 dfac2b 9817 qreccl 12638 dvdsaddre2b 15944 cmpsub 22459 fclsopni 23074 sumdmdlem2 30682 umgr2cycllem 33002 nocvxminlem 33899 idinside 34313 axc11n11r 34792 isbasisrelowllem1 35453 isbasisrelowllem2 35454 dmqseqim2 36696 prtlem15 36816 prtlem17 36817 ee3bir 42012 ee233 42028 onfrALTlem2 42055 ee223 42143 ee33VD 42388 rngccatidALTV 45435 ringccatidALTV 45498 |
Copyright terms: Public domain | W3C validator |