| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2560 ssorduni 7758 tz7.49 8416 nneneq 9176 dfac2b 10091 qreccl 12935 dvdsaddre2b 16284 cmpsub 23294 fclsopni 23909 nocvxminlem 27696 sumdmdlem2 32355 umgr2cycllem 35134 idinside 36079 axc11n11r 36678 isbasisrelowllem1 37350 isbasisrelowllem2 37351 dmqseqim2 38656 disjlem17 38798 prtlem15 38875 prtlem17 38876 ee3bir 44500 ee233 44516 onfrALTlem2 44543 ee223 44631 ee33VD 44875 ormkglobd 46880 rngccatidALTV 48264 ringccatidALTV 48298 |
| Copyright terms: Public domain | W3C validator |