MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl8 Structured version   Visualization version   GIF version

Theorem syl8 76
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.)
Hypotheses
Ref Expression
syl8.1 (𝜑 → (𝜓 → (𝜒𝜃)))
syl8.2 (𝜃𝜏)
Assertion
Ref Expression
syl8 (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem syl8
StepHypRef Expression
1 syl8.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 syl8.2 . . 3 (𝜃𝜏)
32a1i 11 . 2 (𝜑 → (𝜃𝜏))
41, 3syl6d 75 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  a1ddd  80  com45  97  syl8ib  257  mo4  2609  ssorduni  7363  tz7.49  7939  nneneq  8554  dfac2b  9409  qreccl  12222  dvdsaddre2b  15494  cmpsub  21696  fclsopni  22311  sumdmdlem2  29883  umgr2cycllem  31997  nocvxminlem  32858  idinside  33156  axc11n11r  33621  isbasisrelowllem1  34188  isbasisrelowllem2  34189  dmqseqim2  35443  prtlem15  35563  prtlem17  35564  ee3bir  40397  ee233  40413  onfrALTlem2  40440  ee223  40528  ee33VD  40773  rngccatidALTV  43760  ringccatidALTV  43823
  Copyright terms: Public domain W3C validator