MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl8 Structured version   Visualization version   GIF version

Theorem syl8 76
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.)
Hypotheses
Ref Expression
syl8.1 (𝜑 → (𝜓 → (𝜒𝜃)))
syl8.2 (𝜃𝜏)
Assertion
Ref Expression
syl8 (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem syl8
StepHypRef Expression
1 syl8.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 syl8.2 . . 3 (𝜃𝜏)
32a1i 11 . 2 (𝜑 → (𝜃𝜏))
41, 3syl6d 75 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  a1ddd  80  com45  97  syl8ib  256  mo4  2569  ssorduni  7814  tz7.49  8501  nneneq  9272  nneneqOLD  9284  dfac2b  10200  qreccl  13034  dvdsaddre2b  16355  cmpsub  23429  fclsopni  24044  nocvxminlem  27840  sumdmdlem2  32451  umgr2cycllem  35108  idinside  36048  axc11n11r  36649  isbasisrelowllem1  37321  isbasisrelowllem2  37322  dmqseqim2  38613  disjlem17  38755  prtlem15  38831  prtlem17  38832  ee3bir  44474  ee233  44490  onfrALTlem2  44517  ee223  44605  ee33VD  44850  rngccatidALTV  47995  ringccatidALTV  48029
  Copyright terms: Public domain W3C validator