| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl8 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl8.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| syl8.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl8 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl8.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | syl8.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 4 | 1, 3 | syl6d 75 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a1ddd 80 com45 97 syl8ib 256 mo4 2559 ssorduni 7755 tz7.49 8413 nneneq 9170 dfac2b 10084 qreccl 12928 dvdsaddre2b 16277 cmpsub 23287 fclsopni 23902 nocvxminlem 27689 sumdmdlem2 32348 umgr2cycllem 35127 idinside 36072 axc11n11r 36671 isbasisrelowllem1 37343 isbasisrelowllem2 37344 dmqseqim2 38649 disjlem17 38791 prtlem15 38868 prtlem17 38869 ee3bir 44493 ee233 44509 onfrALTlem2 44536 ee223 44624 ee33VD 44868 ormkglobd 46873 rngccatidALTV 48260 ringccatidALTV 48294 |
| Copyright terms: Public domain | W3C validator |