Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee3bir Structured version   Visualization version   GIF version

Theorem ee3bir 42123
Description: Right-biconditional form of e3 42357 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee3bir.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee3bir.2 (𝜏𝜃)
Assertion
Ref Expression
ee3bir (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem ee3bir
StepHypRef Expression
1 ee3bir.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 ee3bir.2 . . 3 (𝜏𝜃)
32biimpri 227 . 2 (𝜃𝜏)
41, 3syl8 76 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator