| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3260 vtocl3gf 3552 vtocl3g 3554 rspc2ev 3614 reuss 4302 frc 5617 trssord 6369 funtp 6592 resdif 6838 f1cdmsn 7274 f1ofvswap 7298 fnotovb 7455 fovcdm 7575 fnovrn 7580 fmpoco 8092 smoord 8377 odi 8589 oeoa 8607 oeoe 8609 nndi 8633 ecopovtrn 8832 ecovass 8836 ecovdi 8837 unfi 9183 entrfil 9197 domtrfil 9204 f1imaenfi 9207 suppr 9482 infpr 9515 harval2 10009 fin23lem31 10355 tskuni 10795 addasspi 10907 mulasspi 10909 distrpi 10910 mulcanenq 10972 genpass 11021 distrlem1pr 11037 prlem934 11045 ltapr 11057 le2tri3i 11363 subadd 11483 addsub 11491 subdi 11668 submul2 11675 ltaddsub 11709 leaddsub 11711 divval 11896 diveq0 11904 div12 11916 diveq1 11924 divneg 11931 divdiv2 11951 ltmulgt11 12099 gt0div 12106 ge0div 12107 uzind3 12685 fnn0ind 12690 qdivcl 12984 irrmul 12988 xrlttr 13154 fzen 13556 modcyc 13921 modcyc2 13922 rpexpmord 14184 faclbnd4lem4 14312 ccatval21sw 14601 lswccatn0lsw 14607 ccatpfx 14717 ccatopth 14732 cshweqdifid 14836 lenegsq 15337 moddvds 16281 dvdscmulr 16302 dvdsmulcr 16303 dvds2add 16307 dvds2sub 16308 dvdsleabs 16328 divalg 16420 divalgb 16421 ndvdsadd 16427 gcdcllem3 16518 dvdslegcd 16521 modgcd 16549 absmulgcd 16566 odzval 16809 pcmul 16869 ressid2 17253 ressval2 17254 catcisolem 18121 prf1st 18214 prf2nd 18215 1st2ndprf 18216 curfuncf 18248 curf2ndf 18257 pltval 18340 pospo 18353 lubel 18522 isdlat 18530 submgmcl 18683 prdssgrpd 18709 issubmnd 18737 prdsmndd 18746 submcl 18788 grpinvid1 18972 grpinvid2 18973 mulgp1 19088 ghmlin 19202 ghmsub 19205 odlem2 19518 gexlem2 19561 lsmvalx 19618 efgtval 19702 cmncom 19777 lssvnegcl 20911 islss3 20914 prdslmodd 20924 zntoslem 21515 evlslem2 22035 evlseu 22039 maducoeval2 22576 madutpos 22578 madugsum 22579 madurid 22580 m2cpminvid 22689 pm2mpghm 22752 unopn 22839 ntrss 22991 innei 23061 t1sep2 23305 metustsym 24492 cncfi 24836 rrxds 25343 quotval 26250 abelthlem2 26392 mudivsum 27491 padicabv 27591 nosupfv 27668 nosupres 27669 noinffv 27683 ssltsepc 27755 divsval 28132 axsegconlem1 28842 nsnlplig 30408 nsnlpligALT 30409 grpoinvid1 30455 grpoinvid2 30456 grpodivval 30462 ablo4 30477 ablonncan 30483 nvnpcan 30583 nvmeq0 30585 nvabs 30599 imsdval 30613 ipval 30630 nmorepnf 30695 blo3i 30729 blometi 30730 ipasslem5 30762 hvmulcan 30999 his5 31013 his7 31017 his2sub2 31020 hhssabloilem 31188 hhssnv 31191 fh1 31545 fh2 31546 cm2j 31547 homcl 31673 homco1 31728 homulass 31729 hoadddi 31730 hosubsub2 31739 braadd 31872 bramul 31873 lnopmul 31894 lnopli 31895 lnopaddmuli 31900 lnopsubmuli 31902 lnfnli 31967 lnfnaddmuli 31972 kbass2 32044 mdexchi 32262 xdivval 32839 resvid2 33292 resvval2 33293 fedgmullem2 33616 unitdivcld 33878 bnj229 34861 bnj546 34873 bnj570 34882 cusgredgex2 35091 loop1cycl 35105 cvmlift2lem7 35277 finminlem 36282 ivthALT 36299 topdifinffinlem 37311 lindsadd 37583 exidcl 37846 grposnOLD 37852 rngoneglmul 37913 rngonegrmul 37914 divrngcl 37927 crngocom 37971 crngm4 37973 inidl 38000 xrninxpex 38358 oposlem 39146 hlsuprexch 39346 ldilcnv 40080 ltrnu 40086 tgrpgrplem 40714 tgrpabl 40716 erngdvlem3 40955 erngdvlem3-rN 40963 dvalveclem 40990 dvhfvadd 41056 dvhgrp 41072 dvhlveclem 41073 djhval2 41364 f1o2d2 42231 fmpocos 42232 resubadd 42369 diophren 42783 monotoddzzfi 42913 ltrmynn0 42919 ltrmxnn0 42920 lermxnn0 42921 rmyeq 42925 lermy 42926 jm2.21 42965 radcnvrat 44286 dvconstbi 44306 expgrowth 44307 bi3impb 44457 xlimmnfvlem2 45810 xlimpnfvlem2 45814 fnotaovb 47175 tposcurf1 49158 precofvalALT 49227 onetansqsecsq 49573 |
| Copyright terms: Public domain | W3C validator |