| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3255 vtocl3gf 3539 vtocl3g 3541 rspc2ev 3601 reuss 4290 frc 5601 trssord 6349 funtp 6573 resdif 6821 f1cdmsn 7257 f1ofvswap 7281 fnotovb 7439 fovcdm 7559 fnovrn 7564 fmpoco 8074 smoord 8334 odi 8543 oeoa 8561 oeoe 8563 nndi 8587 ecopovtrn 8793 ecovass 8797 ecovdi 8798 unfi 9135 entrfil 9149 domtrfil 9156 f1imaenfi 9159 suppr 9423 infpr 9456 harval2 9950 fin23lem31 10296 tskuni 10736 addasspi 10848 mulasspi 10850 distrpi 10851 mulcanenq 10913 genpass 10962 distrlem1pr 10978 prlem934 10986 ltapr 10998 le2tri3i 11304 subadd 11424 addsub 11432 subdi 11611 submul2 11618 ltaddsub 11652 leaddsub 11654 divval 11839 diveq0 11847 div12 11859 diveq1 11867 divneg 11874 divdiv2 11894 ltmulgt11 12042 gt0div 12049 ge0div 12050 uzind3 12628 fnn0ind 12633 qdivcl 12929 irrmul 12933 xrlttr 13100 fzen 13502 modcyc 13868 modcyc2 13869 rpexpmord 14133 faclbnd4lem4 14261 ccatval21sw 14550 lswccatn0lsw 14556 ccatpfx 14666 ccatopth 14681 cshweqdifid 14785 lenegsq 15287 moddvds 16233 dvdscmulr 16254 dvdsmulcr 16255 dvds2add 16260 dvds2sub 16261 dvdsleabs 16281 divalg 16373 divalgb 16374 ndvdsadd 16380 gcdcllem3 16471 dvdslegcd 16474 modgcd 16502 absmulgcd 16519 odzval 16762 pcmul 16822 ressid2 17204 ressval2 17205 catcisolem 18072 prf1st 18165 prf2nd 18166 1st2ndprf 18167 curfuncf 18199 curf2ndf 18208 pltval 18291 pospo 18304 lubel 18473 isdlat 18481 submgmcl 18634 prdssgrpd 18660 issubmnd 18688 prdsmndd 18697 submcl 18739 grpinvid1 18923 grpinvid2 18924 mulgp1 19039 ghmlin 19153 ghmsub 19156 odlem2 19469 gexlem2 19512 lsmvalx 19569 efgtval 19653 cmncom 19728 lssvnegcl 20862 islss3 20865 prdslmodd 20875 zntoslem 21466 evlslem2 21986 evlseu 21990 maducoeval2 22527 madutpos 22529 madugsum 22530 madurid 22531 m2cpminvid 22640 pm2mpghm 22703 unopn 22790 ntrss 22942 innei 23012 t1sep2 23256 metustsym 24443 cncfi 24787 rrxds 25293 quotval 26200 abelthlem2 26342 mudivsum 27441 padicabv 27541 nosupfv 27618 nosupres 27619 noinffv 27633 ssltsepc 27705 divsval 28092 axsegconlem1 28844 nsnlplig 30410 nsnlpligALT 30411 grpoinvid1 30457 grpoinvid2 30458 grpodivval 30464 ablo4 30479 ablonncan 30485 nvnpcan 30585 nvmeq0 30587 nvabs 30601 imsdval 30615 ipval 30632 nmorepnf 30697 blo3i 30731 blometi 30732 ipasslem5 30764 hvmulcan 31001 his5 31015 his7 31019 his2sub2 31022 hhssabloilem 31190 hhssnv 31193 fh1 31547 fh2 31548 cm2j 31549 homcl 31675 homco1 31730 homulass 31731 hoadddi 31732 hosubsub2 31741 braadd 31874 bramul 31875 lnopmul 31896 lnopli 31897 lnopaddmuli 31902 lnopsubmuli 31904 lnfnli 31969 lnfnaddmuli 31974 kbass2 32046 mdexchi 32264 xdivval 32839 resvid2 33302 resvval2 33303 fedgmullem2 33626 unitdivcld 33891 bnj229 34874 bnj546 34886 bnj570 34895 cusgredgex2 35110 loop1cycl 35124 cvmlift2lem7 35296 finminlem 36306 ivthALT 36323 topdifinffinlem 37335 lindsadd 37607 exidcl 37870 grposnOLD 37876 rngoneglmul 37937 rngonegrmul 37938 divrngcl 37951 crngocom 37995 crngm4 37997 inidl 38024 xrninxpex 38380 oposlem 39175 hlsuprexch 39375 ldilcnv 40109 ltrnu 40115 tgrpgrplem 40743 tgrpabl 40745 erngdvlem3 40984 erngdvlem3-rN 40992 dvalveclem 41019 dvhfvadd 41085 dvhgrp 41101 dvhlveclem 41102 djhval2 41393 f1o2d2 42221 fmpocos 42222 resubadd 42367 diophren 42801 monotoddzzfi 42931 ltrmynn0 42937 ltrmxnn0 42938 lermxnn0 42939 rmyeq 42943 lermy 42944 jm2.21 42983 radcnvrat 44303 dvconstbi 44323 expgrowth 44324 bi3impb 44474 xlimmnfvlem2 45831 xlimpnfvlem2 45835 fnotaovb 47199 tposcurf1 49288 precofvalALT 49357 onetansqsecsq 49750 |
| Copyright terms: Public domain | W3C validator |