![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 422 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1112 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3adant3 1133 3impdi 1351 rsp2e 3276 vtocl3gf 3562 vtocl3g 3564 rspc2ev 3625 reuss 4317 frc 5643 trssord 6382 funtp 6606 resdif 6855 f1cdmsn 7280 f1ofvswap 7304 fnotovb 7459 fovcdm 7577 fnovrn 7582 fmpoco 8081 smoord 8365 odi 8579 oeoa 8597 oeoe 8599 nndi 8623 ecopovtrn 8814 ecovass 8818 ecovdi 8819 unfi 9172 entrfil 9188 domtrfil 9195 f1imaenfi 9198 suppr 9466 infpr 9498 harval2 9992 fin23lem31 10338 tskuni 10778 addasspi 10890 mulasspi 10892 distrpi 10893 mulcanenq 10955 genpass 11004 distrlem1pr 11020 prlem934 11028 ltapr 11040 le2tri3i 11344 subadd 11463 addsub 11471 subdi 11647 submul2 11654 ltaddsub 11688 leaddsub 11690 divval 11874 div12 11894 diveq1 11905 divneg 11906 divdiv2 11926 ltmulgt11 12074 gt0div 12080 ge0div 12081 uzind3 12656 fnn0ind 12661 qdivcl 12954 irrmul 12958 xrlttr 13119 fzen 13518 modcyc 13871 modcyc2 13872 rpexpmord 14133 faclbnd4lem4 14256 ccatval21sw 14535 lswccatn0lsw 14541 ccatpfx 14651 ccatopth 14666 cshweqdifid 14770 lenegsq 15267 moddvds 16208 dvdscmulr 16228 dvdsmulcr 16229 dvds2add 16233 dvds2sub 16234 dvdsleabs 16254 divalg 16346 divalgb 16347 ndvdsadd 16353 gcdcllem3 16442 dvdslegcd 16445 modgcd 16474 absmulgcd 16491 odzval 16724 pcmul 16784 ressid2 17177 ressval2 17178 catcisolem 18060 prf1st 18156 prf2nd 18157 1st2ndprf 18158 curfuncf 18191 curf2ndf 18200 pltval 18285 pospo 18298 lubel 18467 isdlat 18475 prdssgrpd 18624 issubmnd 18652 prdsmndd 18658 submcl 18693 grpinvid1 18876 grpinvid2 18877 mulgp1 18987 ghmlin 19097 ghmsub 19100 odlem2 19407 gexlem2 19450 lsmvalx 19507 efgtval 19591 cmncom 19666 lssvnegcl 20567 islss3 20570 prdslmodd 20580 zntoslem 21112 evlslem2 21642 evlseu 21646 maducoeval2 22142 madutpos 22144 madugsum 22145 madurid 22146 m2cpminvid 22255 pm2mpghm 22318 unopn 22405 ntrss 22559 innei 22629 t1sep2 22873 metustsym 24064 cncfi 24410 rrxds 24910 quotval 25805 abelthlem2 25944 mudivsum 27033 padicabv 27133 nosupfv 27209 nosupres 27210 noinffv 27224 ssltsepc 27294 divsval 27637 axsegconlem1 28175 nsnlplig 29734 nsnlpligALT 29735 grpoinvid1 29781 grpoinvid2 29782 grpodivval 29788 ablo4 29803 ablonncan 29809 nvnpcan 29909 nvmeq0 29911 nvabs 29925 imsdval 29939 ipval 29956 nmorepnf 30021 blo3i 30055 blometi 30056 ipasslem5 30088 hvmulcan 30325 his5 30339 his7 30343 his2sub2 30346 hhssabloilem 30514 hhssnv 30517 fh1 30871 fh2 30872 cm2j 30873 homcl 30999 homco1 31054 homulass 31055 hoadddi 31056 hosubsub2 31065 braadd 31198 bramul 31199 lnopmul 31220 lnopli 31221 lnopaddmuli 31226 lnopsubmuli 31228 lnfnli 31293 lnfnaddmuli 31298 kbass2 31370 mdexchi 31588 xdivval 32085 resvid2 32442 resvval2 32443 fedgmullem2 32715 unitdivcld 32881 bnj229 33895 bnj546 33907 bnj570 33916 cusgredgex2 34113 loop1cycl 34128 cvmlift2lem7 34300 finminlem 35203 ivthALT 35220 topdifinffinlem 36228 lindsadd 36481 exidcl 36744 grposnOLD 36750 rngoneglmul 36811 rngonegrmul 36812 divrngcl 36825 crngocom 36869 crngm4 36871 inidl 36898 xrninxpex 37264 oposlem 38052 hlsuprexch 38252 ldilcnv 38986 ltrnu 38992 tgrpgrplem 39620 tgrpabl 39622 erngdvlem3 39861 erngdvlem3-rN 39869 dvalveclem 39896 dvhfvadd 39962 dvhgrp 39978 dvhlveclem 39979 djhval2 40270 f1o2d2 41055 fmpocos 41056 resubadd 41252 diophren 41551 monotoddzzfi 41681 ltrmynn0 41687 ltrmxnn0 41688 lermxnn0 41689 rmyeq 41693 lermy 41694 jm2.21 41733 radcnvrat 43073 dvconstbi 43093 expgrowth 43094 bi3impb 43244 eel132 43463 xlimmnfvlem2 44549 xlimpnfvlem2 44553 fnotaovb 45906 submgmcl 46564 onetansqsecsq 47806 |
Copyright terms: Public domain | W3C validator |