| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3256 vtocl3gf 3542 vtocl3g 3544 rspc2ev 3604 reuss 4293 frc 5604 trssord 6352 funtp 6576 resdif 6824 f1cdmsn 7260 f1ofvswap 7284 fnotovb 7442 fovcdm 7562 fnovrn 7567 fmpoco 8077 smoord 8337 odi 8546 oeoa 8564 oeoe 8566 nndi 8590 ecopovtrn 8796 ecovass 8800 ecovdi 8801 unfi 9141 entrfil 9155 domtrfil 9162 f1imaenfi 9165 suppr 9430 infpr 9463 harval2 9957 fin23lem31 10303 tskuni 10743 addasspi 10855 mulasspi 10857 distrpi 10858 mulcanenq 10920 genpass 10969 distrlem1pr 10985 prlem934 10993 ltapr 11005 le2tri3i 11311 subadd 11431 addsub 11439 subdi 11618 submul2 11625 ltaddsub 11659 leaddsub 11661 divval 11846 diveq0 11854 div12 11866 diveq1 11874 divneg 11881 divdiv2 11901 ltmulgt11 12049 gt0div 12056 ge0div 12057 uzind3 12635 fnn0ind 12640 qdivcl 12936 irrmul 12940 xrlttr 13107 fzen 13509 modcyc 13875 modcyc2 13876 rpexpmord 14140 faclbnd4lem4 14268 ccatval21sw 14557 lswccatn0lsw 14563 ccatpfx 14673 ccatopth 14688 cshweqdifid 14792 lenegsq 15294 moddvds 16240 dvdscmulr 16261 dvdsmulcr 16262 dvds2add 16267 dvds2sub 16268 dvdsleabs 16288 divalg 16380 divalgb 16381 ndvdsadd 16387 gcdcllem3 16478 dvdslegcd 16481 modgcd 16509 absmulgcd 16526 odzval 16769 pcmul 16829 ressid2 17211 ressval2 17212 catcisolem 18079 prf1st 18172 prf2nd 18173 1st2ndprf 18174 curfuncf 18206 curf2ndf 18215 pltval 18298 pospo 18311 lubel 18480 isdlat 18488 submgmcl 18641 prdssgrpd 18667 issubmnd 18695 prdsmndd 18704 submcl 18746 grpinvid1 18930 grpinvid2 18931 mulgp1 19046 ghmlin 19160 ghmsub 19163 odlem2 19476 gexlem2 19519 lsmvalx 19576 efgtval 19660 cmncom 19735 lssvnegcl 20869 islss3 20872 prdslmodd 20882 zntoslem 21473 evlslem2 21993 evlseu 21997 maducoeval2 22534 madutpos 22536 madugsum 22537 madurid 22538 m2cpminvid 22647 pm2mpghm 22710 unopn 22797 ntrss 22949 innei 23019 t1sep2 23263 metustsym 24450 cncfi 24794 rrxds 25300 quotval 26207 abelthlem2 26349 mudivsum 27448 padicabv 27548 nosupfv 27625 nosupres 27626 noinffv 27640 ssltsepc 27712 divsval 28099 axsegconlem1 28851 nsnlplig 30417 nsnlpligALT 30418 grpoinvid1 30464 grpoinvid2 30465 grpodivval 30471 ablo4 30486 ablonncan 30492 nvnpcan 30592 nvmeq0 30594 nvabs 30608 imsdval 30622 ipval 30639 nmorepnf 30704 blo3i 30738 blometi 30739 ipasslem5 30771 hvmulcan 31008 his5 31022 his7 31026 his2sub2 31029 hhssabloilem 31197 hhssnv 31200 fh1 31554 fh2 31555 cm2j 31556 homcl 31682 homco1 31737 homulass 31738 hoadddi 31739 hosubsub2 31748 braadd 31881 bramul 31882 lnopmul 31903 lnopli 31904 lnopaddmuli 31909 lnopsubmuli 31911 lnfnli 31976 lnfnaddmuli 31981 kbass2 32053 mdexchi 32271 xdivval 32846 resvid2 33309 resvval2 33310 fedgmullem2 33633 unitdivcld 33898 bnj229 34881 bnj546 34893 bnj570 34902 cusgredgex2 35117 loop1cycl 35131 cvmlift2lem7 35303 finminlem 36313 ivthALT 36330 topdifinffinlem 37342 lindsadd 37614 exidcl 37877 grposnOLD 37883 rngoneglmul 37944 rngonegrmul 37945 divrngcl 37958 crngocom 38002 crngm4 38004 inidl 38031 xrninxpex 38387 oposlem 39182 hlsuprexch 39382 ldilcnv 40116 ltrnu 40122 tgrpgrplem 40750 tgrpabl 40752 erngdvlem3 40991 erngdvlem3-rN 40999 dvalveclem 41026 dvhfvadd 41092 dvhgrp 41108 dvhlveclem 41109 djhval2 41400 f1o2d2 42228 fmpocos 42229 resubadd 42374 diophren 42808 monotoddzzfi 42938 ltrmynn0 42944 ltrmxnn0 42945 lermxnn0 42946 rmyeq 42950 lermy 42951 jm2.21 42990 radcnvrat 44310 dvconstbi 44330 expgrowth 44331 bi3impb 44481 xlimmnfvlem2 45838 xlimpnfvlem2 45842 fnotaovb 47203 tposcurf1 49292 precofvalALT 49361 onetansqsecsq 49754 |
| Copyright terms: Public domain | W3C validator |