![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3 1131 3impdi 1349 rsp2e 3275 vtocl3gf 3572 vtocl3g 3574 rspc2ev 3634 reuss 4332 frc 5651 trssord 6402 funtp 6624 resdif 6869 f1cdmsn 7301 f1ofvswap 7325 fnotovb 7482 fovcdm 7602 fnovrn 7607 fmpoco 8118 smoord 8403 odi 8615 oeoa 8633 oeoe 8635 nndi 8659 ecopovtrn 8858 ecovass 8862 ecovdi 8863 unfi 9209 entrfil 9222 domtrfil 9229 f1imaenfi 9232 suppr 9508 infpr 9540 harval2 10034 fin23lem31 10380 tskuni 10820 addasspi 10932 mulasspi 10934 distrpi 10935 mulcanenq 10997 genpass 11046 distrlem1pr 11062 prlem934 11070 ltapr 11082 le2tri3i 11388 subadd 11508 addsub 11516 subdi 11693 submul2 11700 ltaddsub 11734 leaddsub 11736 divval 11921 diveq0 11929 div12 11941 diveq1 11949 divneg 11956 divdiv2 11976 ltmulgt11 12124 gt0div 12131 ge0div 12132 uzind3 12709 fnn0ind 12714 qdivcl 13009 irrmul 13013 xrlttr 13178 fzen 13577 modcyc 13942 modcyc2 13943 rpexpmord 14204 faclbnd4lem4 14331 ccatval21sw 14619 lswccatn0lsw 14625 ccatpfx 14735 ccatopth 14750 cshweqdifid 14854 lenegsq 15355 moddvds 16297 dvdscmulr 16318 dvdsmulcr 16319 dvds2add 16323 dvds2sub 16324 dvdsleabs 16344 divalg 16436 divalgb 16437 ndvdsadd 16443 gcdcllem3 16534 dvdslegcd 16537 modgcd 16565 absmulgcd 16582 odzval 16824 pcmul 16884 ressid2 17277 ressval2 17278 catcisolem 18163 prf1st 18259 prf2nd 18260 1st2ndprf 18261 curfuncf 18294 curf2ndf 18303 pltval 18389 pospo 18402 lubel 18571 isdlat 18579 submgmcl 18732 prdssgrpd 18758 issubmnd 18786 prdsmndd 18795 submcl 18837 grpinvid1 19021 grpinvid2 19022 mulgp1 19137 ghmlin 19251 ghmsub 19254 odlem2 19571 gexlem2 19614 lsmvalx 19671 efgtval 19755 cmncom 19830 lssvnegcl 20971 islss3 20974 prdslmodd 20984 zntoslem 21592 evlslem2 22120 evlseu 22124 maducoeval2 22661 madutpos 22663 madugsum 22664 madurid 22665 m2cpminvid 22774 pm2mpghm 22837 unopn 22924 ntrss 23078 innei 23148 t1sep2 23392 metustsym 24583 cncfi 24933 rrxds 25440 quotval 26348 abelthlem2 26490 mudivsum 27588 padicabv 27688 nosupfv 27765 nosupres 27766 noinffv 27780 ssltsepc 27852 divsval 28229 axsegconlem1 28946 nsnlplig 30509 nsnlpligALT 30510 grpoinvid1 30556 grpoinvid2 30557 grpodivval 30563 ablo4 30578 ablonncan 30584 nvnpcan 30684 nvmeq0 30686 nvabs 30700 imsdval 30714 ipval 30731 nmorepnf 30796 blo3i 30830 blometi 30831 ipasslem5 30863 hvmulcan 31100 his5 31114 his7 31118 his2sub2 31121 hhssabloilem 31289 hhssnv 31292 fh1 31646 fh2 31647 cm2j 31648 homcl 31774 homco1 31829 homulass 31830 hoadddi 31831 hosubsub2 31840 braadd 31973 bramul 31974 lnopmul 31995 lnopli 31996 lnopaddmuli 32001 lnopsubmuli 32003 lnfnli 32068 lnfnaddmuli 32073 kbass2 32145 mdexchi 32363 xdivval 32885 resvid2 33333 resvval2 33334 fedgmullem2 33657 unitdivcld 33861 bnj229 34876 bnj546 34888 bnj570 34897 cusgredgex2 35106 loop1cycl 35121 cvmlift2lem7 35293 finminlem 36300 ivthALT 36317 topdifinffinlem 37329 lindsadd 37599 exidcl 37862 grposnOLD 37868 rngoneglmul 37929 rngonegrmul 37930 divrngcl 37943 crngocom 37987 crngm4 37989 inidl 38016 xrninxpex 38375 oposlem 39163 hlsuprexch 39363 ldilcnv 40097 ltrnu 40103 tgrpgrplem 40731 tgrpabl 40733 erngdvlem3 40972 erngdvlem3-rN 40980 dvalveclem 41007 dvhfvadd 41073 dvhgrp 41089 dvhlveclem 41090 djhval2 41381 f1o2d2 42252 fmpocos 42253 resubadd 42385 diophren 42800 monotoddzzfi 42930 ltrmynn0 42936 ltrmxnn0 42937 lermxnn0 42938 rmyeq 42942 lermy 42943 jm2.21 42982 radcnvrat 44309 dvconstbi 44329 expgrowth 44330 bi3impb 44480 eel132 44699 xlimmnfvlem2 45788 xlimpnfvlem2 45792 fnotaovb 47147 onetansqsecsq 48991 |
Copyright terms: Public domain | W3C validator |