![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3 1131 3impdi 1349 rsp2e 3274 vtocl3gf 3562 vtocl3g 3564 rspc2ev 3624 reuss 4316 frc 5642 trssord 6381 funtp 6605 resdif 6854 f1cdmsn 7283 f1ofvswap 7307 fnotovb 7462 fovcdm 7581 fnovrn 7586 fmpoco 8086 smoord 8371 odi 8585 oeoa 8603 oeoe 8605 nndi 8629 ecopovtrn 8820 ecovass 8824 ecovdi 8825 unfi 9178 entrfil 9194 domtrfil 9201 f1imaenfi 9204 suppr 9472 infpr 9504 harval2 9998 fin23lem31 10344 tskuni 10784 addasspi 10896 mulasspi 10898 distrpi 10899 mulcanenq 10961 genpass 11010 distrlem1pr 11026 prlem934 11034 ltapr 11046 le2tri3i 11351 subadd 11470 addsub 11478 subdi 11654 submul2 11661 ltaddsub 11695 leaddsub 11697 divval 11881 div12 11901 diveq1 11912 divneg 11913 divdiv2 11933 ltmulgt11 12081 gt0div 12087 ge0div 12088 uzind3 12663 fnn0ind 12668 qdivcl 12961 irrmul 12965 xrlttr 13126 fzen 13525 modcyc 13878 modcyc2 13879 rpexpmord 14140 faclbnd4lem4 14263 ccatval21sw 14542 lswccatn0lsw 14548 ccatpfx 14658 ccatopth 14673 cshweqdifid 14777 lenegsq 15274 moddvds 16215 dvdscmulr 16235 dvdsmulcr 16236 dvds2add 16240 dvds2sub 16241 dvdsleabs 16261 divalg 16353 divalgb 16354 ndvdsadd 16360 gcdcllem3 16449 dvdslegcd 16452 modgcd 16481 absmulgcd 16498 odzval 16731 pcmul 16791 ressid2 17184 ressval2 17185 catcisolem 18070 prf1st 18166 prf2nd 18167 1st2ndprf 18168 curfuncf 18201 curf2ndf 18210 pltval 18295 pospo 18308 lubel 18477 isdlat 18485 submgmcl 18638 prdssgrpd 18664 issubmnd 18692 prdsmndd 18698 submcl 18735 grpinvid1 18919 grpinvid2 18920 mulgp1 19030 ghmlin 19142 ghmsub 19145 odlem2 19455 gexlem2 19498 lsmvalx 19555 efgtval 19639 cmncom 19714 lssvnegcl 20799 islss3 20802 prdslmodd 20812 zntoslem 21422 evlslem2 21953 evlseu 21957 maducoeval2 22462 madutpos 22464 madugsum 22465 madurid 22466 m2cpminvid 22575 pm2mpghm 22638 unopn 22725 ntrss 22879 innei 22949 t1sep2 23193 metustsym 24384 cncfi 24734 rrxds 25241 quotval 26144 abelthlem2 26284 mudivsum 27376 padicabv 27476 nosupfv 27552 nosupres 27553 noinffv 27567 ssltsepc 27639 divsval 28002 axsegconlem1 28608 nsnlplig 30167 nsnlpligALT 30168 grpoinvid1 30214 grpoinvid2 30215 grpodivval 30221 ablo4 30236 ablonncan 30242 nvnpcan 30342 nvmeq0 30344 nvabs 30358 imsdval 30372 ipval 30389 nmorepnf 30454 blo3i 30488 blometi 30489 ipasslem5 30521 hvmulcan 30758 his5 30772 his7 30776 his2sub2 30779 hhssabloilem 30947 hhssnv 30950 fh1 31304 fh2 31305 cm2j 31306 homcl 31432 homco1 31487 homulass 31488 hoadddi 31489 hosubsub2 31498 braadd 31631 bramul 31632 lnopmul 31653 lnopli 31654 lnopaddmuli 31659 lnopsubmuli 31661 lnfnli 31726 lnfnaddmuli 31731 kbass2 31803 mdexchi 32021 xdivval 32518 resvid2 32878 resvval2 32879 fedgmullem2 33169 unitdivcld 33345 bnj229 34359 bnj546 34371 bnj570 34380 cusgredgex2 34577 loop1cycl 34592 cvmlift2lem7 34764 finminlem 35667 ivthALT 35684 topdifinffinlem 36692 lindsadd 36945 exidcl 37208 grposnOLD 37214 rngoneglmul 37275 rngonegrmul 37276 divrngcl 37289 crngocom 37333 crngm4 37335 inidl 37362 xrninxpex 37728 oposlem 38516 hlsuprexch 38716 ldilcnv 39450 ltrnu 39456 tgrpgrplem 40084 tgrpabl 40086 erngdvlem3 40325 erngdvlem3-rN 40333 dvalveclem 40360 dvhfvadd 40426 dvhgrp 40442 dvhlveclem 40443 djhval2 40734 f1o2d2 41522 fmpocos 41523 resubadd 41715 diophren 42014 monotoddzzfi 42144 ltrmynn0 42150 ltrmxnn0 42151 lermxnn0 42152 rmyeq 42156 lermy 42157 jm2.21 42196 radcnvrat 43536 dvconstbi 43556 expgrowth 43557 bi3impb 43707 eel132 43926 xlimmnfvlem2 45008 xlimpnfvlem2 45012 fnotaovb 46365 onetansqsecsq 47968 |
Copyright terms: Public domain | W3C validator |