| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3253 vtocl3gf 3536 vtocl3g 3538 rspc2ev 3598 reuss 4286 frc 5594 trssord 6337 funtp 6557 resdif 6803 f1cdmsn 7239 f1ofvswap 7263 fnotovb 7421 fovcdm 7539 fnovrn 7544 fmpoco 8051 smoord 8311 odi 8520 oeoa 8538 oeoe 8540 nndi 8564 ecopovtrn 8770 ecovass 8774 ecovdi 8775 unfi 9112 entrfil 9126 domtrfil 9133 f1imaenfi 9136 suppr 9399 infpr 9432 harval2 9926 fin23lem31 10272 tskuni 10712 addasspi 10824 mulasspi 10826 distrpi 10827 mulcanenq 10889 genpass 10938 distrlem1pr 10954 prlem934 10962 ltapr 10974 le2tri3i 11280 subadd 11400 addsub 11408 subdi 11587 submul2 11594 ltaddsub 11628 leaddsub 11630 divval 11815 diveq0 11823 div12 11835 diveq1 11843 divneg 11850 divdiv2 11870 ltmulgt11 12018 gt0div 12025 ge0div 12026 uzind3 12604 fnn0ind 12609 qdivcl 12905 irrmul 12909 xrlttr 13076 fzen 13478 modcyc 13844 modcyc2 13845 rpexpmord 14109 faclbnd4lem4 14237 ccatval21sw 14526 lswccatn0lsw 14532 ccatpfx 14642 ccatopth 14657 cshweqdifid 14761 lenegsq 15263 moddvds 16209 dvdscmulr 16230 dvdsmulcr 16231 dvds2add 16236 dvds2sub 16237 dvdsleabs 16257 divalg 16349 divalgb 16350 ndvdsadd 16356 gcdcllem3 16447 dvdslegcd 16450 modgcd 16478 absmulgcd 16495 odzval 16738 pcmul 16798 ressid2 17180 ressval2 17181 catcisolem 18048 prf1st 18141 prf2nd 18142 1st2ndprf 18143 curfuncf 18175 curf2ndf 18184 pltval 18267 pospo 18280 lubel 18449 isdlat 18457 submgmcl 18610 prdssgrpd 18636 issubmnd 18664 prdsmndd 18673 submcl 18715 grpinvid1 18899 grpinvid2 18900 mulgp1 19015 ghmlin 19129 ghmsub 19132 odlem2 19445 gexlem2 19488 lsmvalx 19545 efgtval 19629 cmncom 19704 lssvnegcl 20838 islss3 20841 prdslmodd 20851 zntoslem 21442 evlslem2 21962 evlseu 21966 maducoeval2 22503 madutpos 22505 madugsum 22506 madurid 22507 m2cpminvid 22616 pm2mpghm 22679 unopn 22766 ntrss 22918 innei 22988 t1sep2 23232 metustsym 24419 cncfi 24763 rrxds 25269 quotval 26176 abelthlem2 26318 mudivsum 27417 padicabv 27517 nosupfv 27594 nosupres 27595 noinffv 27609 ssltsepc 27681 divsval 28068 axsegconlem1 28820 nsnlplig 30383 nsnlpligALT 30384 grpoinvid1 30430 grpoinvid2 30431 grpodivval 30437 ablo4 30452 ablonncan 30458 nvnpcan 30558 nvmeq0 30560 nvabs 30574 imsdval 30588 ipval 30605 nmorepnf 30670 blo3i 30704 blometi 30705 ipasslem5 30737 hvmulcan 30974 his5 30988 his7 30992 his2sub2 30995 hhssabloilem 31163 hhssnv 31166 fh1 31520 fh2 31521 cm2j 31522 homcl 31648 homco1 31703 homulass 31704 hoadddi 31705 hosubsub2 31714 braadd 31847 bramul 31848 lnopmul 31869 lnopli 31870 lnopaddmuli 31875 lnopsubmuli 31877 lnfnli 31942 lnfnaddmuli 31947 kbass2 32019 mdexchi 32237 xdivval 32812 resvid2 33275 resvval2 33276 fedgmullem2 33599 unitdivcld 33864 bnj229 34847 bnj546 34859 bnj570 34868 cusgredgex2 35083 loop1cycl 35097 cvmlift2lem7 35269 finminlem 36279 ivthALT 36296 topdifinffinlem 37308 lindsadd 37580 exidcl 37843 grposnOLD 37849 rngoneglmul 37910 rngonegrmul 37911 divrngcl 37924 crngocom 37968 crngm4 37970 inidl 37997 xrninxpex 38353 oposlem 39148 hlsuprexch 39348 ldilcnv 40082 ltrnu 40088 tgrpgrplem 40716 tgrpabl 40718 erngdvlem3 40957 erngdvlem3-rN 40965 dvalveclem 40992 dvhfvadd 41058 dvhgrp 41074 dvhlveclem 41075 djhval2 41366 f1o2d2 42194 fmpocos 42195 resubadd 42340 diophren 42774 monotoddzzfi 42904 ltrmynn0 42910 ltrmxnn0 42911 lermxnn0 42912 rmyeq 42916 lermy 42917 jm2.21 42956 radcnvrat 44276 dvconstbi 44296 expgrowth 44297 bi3impb 44447 xlimmnfvlem2 45804 xlimpnfvlem2 45808 fnotaovb 47172 tposcurf1 49261 precofvalALT 49330 onetansqsecsq 49723 |
| Copyright terms: Public domain | W3C validator |