| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3251 vtocl3gf 3525 vtocl3g 3527 rspc2ev 3586 reuss 4276 frc 5584 trssord 6331 funtp 6546 resdif 6792 f1cdmsn 7225 f1ofvswap 7249 fnotovb 7407 fovcdm 7525 fnovrn 7530 fmpoco 8034 smoord 8294 odi 8503 oeoa 8521 oeoe 8523 nndi 8547 ecopovtrn 8753 ecovass 8757 ecovdi 8758 unfi 9091 entrfil 9105 domtrfil 9112 f1imaenfi 9115 suppr 9367 infpr 9400 harval2 9901 fin23lem31 10245 tskuni 10685 addasspi 10797 mulasspi 10799 distrpi 10800 mulcanenq 10862 genpass 10911 distrlem1pr 10927 prlem934 10935 ltapr 10947 le2tri3i 11254 subadd 11374 addsub 11382 subdi 11561 submul2 11568 ltaddsub 11602 leaddsub 11604 divval 11789 diveq0 11797 div12 11809 diveq1 11817 divneg 11824 divdiv2 11844 ltmulgt11 11992 gt0div 11999 ge0div 12000 uzind3 12577 fnn0ind 12582 qdivcl 12874 irrmul 12878 xrlttr 13045 fzen 13448 modcyc 13817 modcyc2 13818 rpexpmord 14082 faclbnd4lem4 14210 ccatval21sw 14500 lswccatn0lsw 14506 ccatpfx 14615 ccatopth 14630 cshweqdifid 14734 lenegsq 15235 moddvds 16181 dvdscmulr 16202 dvdsmulcr 16203 dvds2add 16208 dvds2sub 16209 dvdsleabs 16229 divalg 16321 divalgb 16322 ndvdsadd 16328 gcdcllem3 16419 dvdslegcd 16422 modgcd 16450 absmulgcd 16467 odzval 16710 pcmul 16770 ressid2 17152 ressval2 17153 catcisolem 18025 prf1st 18118 prf2nd 18119 1st2ndprf 18120 curfuncf 18152 curf2ndf 18161 pltval 18244 pospo 18257 lubel 18428 isdlat 18436 submgmcl 18623 prdssgrpd 18649 issubmnd 18677 prdsmndd 18686 submcl 18728 grpinvid1 18912 grpinvid2 18913 mulgp1 19028 ghmlin 19141 ghmsub 19144 odlem2 19459 gexlem2 19502 lsmvalx 19559 efgtval 19643 cmncom 19718 lssvnegcl 20898 islss3 20901 prdslmodd 20911 zntoslem 21502 evlslem2 22025 evlseu 22029 maducoeval2 22575 madutpos 22577 madugsum 22578 madurid 22579 m2cpminvid 22688 pm2mpghm 22751 unopn 22838 ntrss 22990 innei 23060 t1sep2 23304 metustsym 24490 cncfi 24834 rrxds 25340 quotval 26247 abelthlem2 26389 mudivsum 27488 padicabv 27588 nosupfv 27665 nosupres 27666 noinffv 27680 ssltsepc 27754 divsval 28148 axsegconlem1 28916 nsnlplig 30482 nsnlpligALT 30483 grpoinvid1 30529 grpoinvid2 30530 grpodivval 30536 ablo4 30551 ablonncan 30557 nvnpcan 30657 nvmeq0 30659 nvabs 30673 imsdval 30687 ipval 30704 nmorepnf 30769 blo3i 30803 blometi 30804 ipasslem5 30836 hvmulcan 31073 his5 31087 his7 31091 his2sub2 31094 hhssabloilem 31262 hhssnv 31265 fh1 31619 fh2 31620 cm2j 31621 homcl 31747 homco1 31802 homulass 31803 hoadddi 31804 hosubsub2 31813 braadd 31946 bramul 31947 lnopmul 31968 lnopli 31969 lnopaddmuli 31974 lnopsubmuli 31976 lnfnli 32041 lnfnaddmuli 32046 kbass2 32118 mdexchi 32336 xdivval 32928 resvid2 33339 resvval2 33340 fedgmullem2 33715 unitdivcld 33986 bnj229 34968 bnj546 34980 bnj570 34989 rankfilimb 35185 cusgredgex2 35239 loop1cycl 35253 cvmlift2lem7 35425 finminlem 36434 ivthALT 36451 topdifinffinlem 37464 lindsadd 37726 exidcl 37989 grposnOLD 37995 rngoneglmul 38056 rngonegrmul 38057 divrngcl 38070 crngocom 38114 crngm4 38116 inidl 38143 xrninxpex 38514 oposlem 39354 hlsuprexch 39553 ldilcnv 40287 ltrnu 40293 tgrpgrplem 40921 tgrpabl 40923 erngdvlem3 41162 erngdvlem3-rN 41170 dvalveclem 41197 dvhfvadd 41263 dvhgrp 41279 dvhlveclem 41280 djhval2 41571 f1o2d2 42404 fmpocos 42405 resubadd 42549 diophren 42970 monotoddzzfi 43099 ltrmynn0 43105 ltrmxnn0 43106 lermxnn0 43107 rmyeq 43111 lermy 43112 jm2.21 43151 radcnvrat 44471 dvconstbi 44491 expgrowth 44492 bi3impb 44641 xlimmnfvlem2 45993 xlimpnfvlem2 45997 fnotaovb 47360 tposcurf1 49460 precofvalALT 49529 onetansqsecsq 49922 |
| Copyright terms: Public domain | W3C validator |