Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 421 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3adant3 1131 3impdi 1349 rsp2e 3239 vtocl3gf 3510 vtocl3g 3512 rspc2ev 3573 reuss 4251 frc 5556 trssord 6287 funtp 6498 resdif 6746 f1cdmsn 7163 f1ofvswap 7187 fnotovb 7334 fovrn 7451 fnovrn 7456 fmpoco 7944 smoord 8205 odi 8419 oeoa 8437 oeoe 8439 nndi 8463 ecopovtrn 8618 ecovass 8622 ecovdi 8623 unfi 8964 entrfil 8980 domtrfil 8987 f1imaenfi 8990 suppr 9239 infpr 9271 harval2 9764 fin23lem31 10108 tskuni 10548 addasspi 10660 mulasspi 10662 distrpi 10663 mulcanenq 10725 genpass 10774 distrlem1pr 10790 prlem934 10798 ltapr 10810 le2tri3i 11114 subadd 11233 addsub 11241 subdi 11417 submul2 11424 ltaddsub 11458 leaddsub 11460 divval 11644 div12 11664 diveq1 11675 divneg 11676 divdiv2 11696 ltmulgt11 11844 gt0div 11850 ge0div 11851 uzind3 12423 fnn0ind 12428 qdivcl 12719 irrmul 12723 xrlttr 12883 fzen 13282 modcyc 13635 modcyc2 13636 rpexpmord 13895 faclbnd4lem4 14019 ccatval21sw 14299 lswccatn0lsw 14305 ccatpfx 14423 ccatopth 14438 cshweqdifid 14542 lenegsq 15041 moddvds 15983 dvdscmulr 16003 dvdsmulcr 16004 dvds2add 16008 dvds2sub 16009 dvdsleabs 16029 divalg 16121 divalgb 16122 ndvdsadd 16128 gcdcllem3 16217 dvdslegcd 16220 modgcd 16249 absmulgcd 16266 odzval 16501 pcmul 16561 ressid2 16954 ressval2 16955 catcisolem 17834 prf1st 17930 prf2nd 17931 1st2ndprf 17932 curfuncf 17965 curf2ndf 17974 pltval 18059 pospo 18072 lubel 18241 isdlat 18249 issubmnd 18421 prdsmndd 18427 submcl 18460 grpinvid1 18639 grpinvid2 18640 mulgp1 18745 ghmlin 18848 ghmsub 18851 odlem2 19156 gexlem2 19196 lsmvalx 19253 efgtval 19338 cmncom 19412 lssvnegcl 20227 islss3 20230 prdslmodd 20240 zntoslem 20773 evlslem2 21298 evlseu 21302 maducoeval2 21798 madutpos 21800 madugsum 21801 madurid 21802 m2cpminvid 21911 pm2mpghm 21974 unopn 22061 ntrss 22215 innei 22285 t1sep2 22529 metustsym 23720 cncfi 24066 rrxds 24566 quotval 25461 abelthlem2 25600 mudivsum 26687 padicabv 26787 axsegconlem1 27294 nsnlplig 28852 nsnlpligALT 28853 grpoinvid1 28899 grpoinvid2 28900 grpodivval 28906 ablo4 28921 ablonncan 28927 nvnpcan 29027 nvmeq0 29029 nvabs 29043 imsdval 29057 ipval 29074 nmorepnf 29139 blo3i 29173 blometi 29174 ipasslem5 29206 hvmulcan 29443 his5 29457 his7 29461 his2sub2 29464 hhssabloilem 29632 hhssnv 29635 fh1 29989 fh2 29990 cm2j 29991 homcl 30117 homco1 30172 homulass 30173 hoadddi 30174 hosubsub2 30183 braadd 30316 bramul 30317 lnopmul 30338 lnopli 30339 lnopaddmuli 30344 lnopsubmuli 30346 lnfnli 30411 lnfnaddmuli 30416 kbass2 30488 mdexchi 30706 xdivval 31202 resvid2 31536 resvval2 31537 fedgmullem2 31720 unitdivcld 31860 bnj229 32873 bnj546 32885 bnj570 32894 cusgredgex2 33093 loop1cycl 33108 cvmlift2lem7 33280 nosupfv 33918 nosupres 33919 noinffv 33933 ssltsepc 33996 finminlem 34516 ivthALT 34533 topdifinffinlem 35527 lindsadd 35779 exidcl 36043 grposnOLD 36049 rngoneglmul 36110 rngonegrmul 36111 divrngcl 36124 crngocom 36168 crngm4 36170 inidl 36197 xrninxpex 36527 oposlem 37203 hlsuprexch 37402 ldilcnv 38136 ltrnu 38142 tgrpgrplem 38770 tgrpabl 38772 erngdvlem3 39011 erngdvlem3-rN 39019 dvalveclem 39046 dvhfvadd 39112 dvhgrp 39128 dvhlveclem 39129 djhval2 39420 resubadd 40369 diophren 40642 monotoddzzfi 40771 ltrmynn0 40777 ltrmxnn0 40778 lermxnn0 40779 rmyeq 40783 lermy 40784 jm2.21 40823 radcnvrat 41939 dvconstbi 41959 expgrowth 41960 bi3impb 42110 eel132 42329 xlimmnfvlem2 43381 xlimpnfvlem2 43385 fnotaovb 44701 submgmcl 45359 onetansqsecsq 46474 |
Copyright terms: Public domain | W3C validator |