Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3 1130 3impdi 1348 rsp2e 3233 vtocl3gf 3499 vtocl3g 3501 rspc2ev 3564 reuss 4247 frc 5546 trssord 6268 funtp 6475 resdif 6720 f1ofvswap 7158 fnotovb 7305 fovrn 7420 fnovrn 7425 fmpoco 7906 smoord 8167 odi 8372 oeoa 8390 oeoe 8392 nndi 8416 ecopovtrn 8567 ecovass 8571 ecovdi 8572 unfi 8917 entrfil 8931 domtrfi 8938 f1imaenfi 8939 suppr 9160 infpr 9192 harval2 9686 fin23lem31 10030 tskuni 10470 addasspi 10582 mulasspi 10584 distrpi 10585 mulcanenq 10647 genpass 10696 distrlem1pr 10712 prlem934 10720 ltapr 10732 le2tri3i 11035 subadd 11154 addsub 11162 subdi 11338 submul2 11345 ltaddsub 11379 leaddsub 11381 divval 11565 div12 11585 diveq1 11596 divneg 11597 divdiv2 11617 ltmulgt11 11765 gt0div 11771 ge0div 11772 uzind3 12344 fnn0ind 12349 qdivcl 12639 irrmul 12643 xrlttr 12803 fzen 13202 modcyc 13554 modcyc2 13555 rpexpmord 13814 faclbnd4lem4 13938 ccatval21sw 14218 lswccatn0lsw 14224 ccatpfx 14342 ccatopth 14357 cshweqdifid 14461 lenegsq 14960 moddvds 15902 dvdscmulr 15922 dvdsmulcr 15923 dvds2add 15927 dvds2sub 15928 dvdsleabs 15948 divalg 16040 divalgb 16041 ndvdsadd 16047 gcdcllem3 16136 dvdslegcd 16139 modgcd 16168 absmulgcd 16185 odzval 16420 pcmul 16480 ressid2 16871 ressval2 16872 catcisolem 17741 prf1st 17837 prf2nd 17838 1st2ndprf 17839 curfuncf 17872 curf2ndf 17881 pltval 17965 pospo 17978 lubel 18147 isdlat 18155 issubmnd 18327 prdsmndd 18333 submcl 18366 grpinvid1 18545 grpinvid2 18546 mulgp1 18651 ghmlin 18754 ghmsub 18757 odlem2 19062 gexlem2 19102 lsmvalx 19159 efgtval 19244 cmncom 19318 lssvnegcl 20133 islss3 20136 prdslmodd 20146 zntoslem 20676 evlslem2 21199 evlseu 21203 maducoeval2 21697 madutpos 21699 madugsum 21700 madurid 21701 m2cpminvid 21810 pm2mpghm 21873 unopn 21960 ntrss 22114 innei 22184 t1sep2 22428 metustsym 23617 cncfi 23963 rrxds 24462 quotval 25357 abelthlem2 25496 mudivsum 26583 padicabv 26683 axsegconlem1 27188 nsnlplig 28744 nsnlpligALT 28745 grpoinvid1 28791 grpoinvid2 28792 grpodivval 28798 ablo4 28813 ablonncan 28819 nvnpcan 28919 nvmeq0 28921 nvabs 28935 imsdval 28949 ipval 28966 nmorepnf 29031 blo3i 29065 blometi 29066 ipasslem5 29098 hvmulcan 29335 his5 29349 his7 29353 his2sub2 29356 hhssabloilem 29524 hhssnv 29527 fh1 29881 fh2 29882 cm2j 29883 homcl 30009 homco1 30064 homulass 30065 hoadddi 30066 hosubsub2 30075 braadd 30208 bramul 30209 lnopmul 30230 lnopli 30231 lnopaddmuli 30236 lnopsubmuli 30238 lnfnli 30303 lnfnaddmuli 30308 kbass2 30380 mdexchi 30598 xdivval 31095 resvid2 31429 resvval2 31430 fedgmullem2 31613 unitdivcld 31753 bnj229 32764 bnj546 32776 bnj570 32785 cusgredgex2 32984 loop1cycl 32999 cvmlift2lem7 33171 nosupfv 33836 nosupres 33837 noinffv 33851 ssltsepc 33914 finminlem 34434 ivthALT 34451 topdifinffinlem 35445 lindsadd 35697 exidcl 35961 grposnOLD 35967 rngoneglmul 36028 rngonegrmul 36029 divrngcl 36042 crngocom 36086 crngm4 36088 inidl 36115 xrninxpex 36447 oposlem 37123 hlsuprexch 37322 ldilcnv 38056 ltrnu 38062 tgrpgrplem 38690 tgrpabl 38692 erngdvlem3 38931 erngdvlem3-rN 38939 dvalveclem 38966 dvhfvadd 39032 dvhgrp 39048 dvhlveclem 39049 djhval2 39340 resubadd 40283 diophren 40551 monotoddzzfi 40680 ltrmynn0 40686 ltrmxnn0 40687 lermxnn0 40688 rmyeq 40692 lermy 40693 jm2.21 40732 radcnvrat 41821 dvconstbi 41841 expgrowth 41842 bi3impb 41992 eel132 42211 xlimmnfvlem2 43264 xlimpnfvlem2 43268 fnotaovb 44577 submgmcl 45236 onetansqsecsq 46349 |
Copyright terms: Public domain | W3C validator |