| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3247 vtocl3gf 3530 vtocl3g 3532 rspc2ev 3592 reuss 4280 frc 5586 trssord 6328 funtp 6543 resdif 6789 f1cdmsn 7223 f1ofvswap 7247 fnotovb 7405 fovcdm 7523 fnovrn 7528 fmpoco 8035 smoord 8295 odi 8504 oeoa 8522 oeoe 8524 nndi 8548 ecopovtrn 8754 ecovass 8758 ecovdi 8759 unfi 9095 entrfil 9109 domtrfil 9116 f1imaenfi 9119 suppr 9381 infpr 9414 harval2 9912 fin23lem31 10256 tskuni 10696 addasspi 10808 mulasspi 10810 distrpi 10811 mulcanenq 10873 genpass 10922 distrlem1pr 10938 prlem934 10946 ltapr 10958 le2tri3i 11265 subadd 11385 addsub 11393 subdi 11572 submul2 11579 ltaddsub 11613 leaddsub 11615 divval 11800 diveq0 11808 div12 11820 diveq1 11828 divneg 11835 divdiv2 11855 ltmulgt11 12003 gt0div 12010 ge0div 12011 uzind3 12589 fnn0ind 12594 qdivcl 12890 irrmul 12894 xrlttr 13061 fzen 13463 modcyc 13829 modcyc2 13830 rpexpmord 14094 faclbnd4lem4 14222 ccatval21sw 14511 lswccatn0lsw 14517 ccatpfx 14626 ccatopth 14641 cshweqdifid 14745 lenegsq 15247 moddvds 16193 dvdscmulr 16214 dvdsmulcr 16215 dvds2add 16220 dvds2sub 16221 dvdsleabs 16241 divalg 16333 divalgb 16334 ndvdsadd 16340 gcdcllem3 16431 dvdslegcd 16434 modgcd 16462 absmulgcd 16479 odzval 16722 pcmul 16782 ressid2 17164 ressval2 17165 catcisolem 18036 prf1st 18129 prf2nd 18130 1st2ndprf 18131 curfuncf 18163 curf2ndf 18172 pltval 18255 pospo 18268 lubel 18439 isdlat 18447 submgmcl 18600 prdssgrpd 18626 issubmnd 18654 prdsmndd 18663 submcl 18705 grpinvid1 18889 grpinvid2 18890 mulgp1 19005 ghmlin 19119 ghmsub 19122 odlem2 19437 gexlem2 19480 lsmvalx 19537 efgtval 19621 cmncom 19696 lssvnegcl 20878 islss3 20881 prdslmodd 20891 zntoslem 21482 evlslem2 22003 evlseu 22007 maducoeval2 22544 madutpos 22546 madugsum 22547 madurid 22548 m2cpminvid 22657 pm2mpghm 22720 unopn 22807 ntrss 22959 innei 23029 t1sep2 23273 metustsym 24460 cncfi 24804 rrxds 25310 quotval 26217 abelthlem2 26359 mudivsum 27458 padicabv 27558 nosupfv 27635 nosupres 27636 noinffv 27650 ssltsepc 27723 divsval 28116 axsegconlem1 28881 nsnlplig 30444 nsnlpligALT 30445 grpoinvid1 30491 grpoinvid2 30492 grpodivval 30498 ablo4 30513 ablonncan 30519 nvnpcan 30619 nvmeq0 30621 nvabs 30635 imsdval 30649 ipval 30666 nmorepnf 30731 blo3i 30765 blometi 30766 ipasslem5 30798 hvmulcan 31035 his5 31049 his7 31053 his2sub2 31056 hhssabloilem 31224 hhssnv 31227 fh1 31581 fh2 31582 cm2j 31583 homcl 31709 homco1 31764 homulass 31765 hoadddi 31766 hosubsub2 31775 braadd 31908 bramul 31909 lnopmul 31930 lnopli 31931 lnopaddmuli 31936 lnopsubmuli 31938 lnfnli 32003 lnfnaddmuli 32008 kbass2 32080 mdexchi 32298 xdivval 32878 resvid2 33287 resvval2 33288 fedgmullem2 33616 unitdivcld 33887 bnj229 34870 bnj546 34882 bnj570 34891 cusgredgex2 35115 loop1cycl 35129 cvmlift2lem7 35301 finminlem 36311 ivthALT 36328 topdifinffinlem 37340 lindsadd 37612 exidcl 37875 grposnOLD 37881 rngoneglmul 37942 rngonegrmul 37943 divrngcl 37956 crngocom 38000 crngm4 38002 inidl 38029 xrninxpex 38385 oposlem 39180 hlsuprexch 39380 ldilcnv 40114 ltrnu 40120 tgrpgrplem 40748 tgrpabl 40750 erngdvlem3 40989 erngdvlem3-rN 40997 dvalveclem 41024 dvhfvadd 41090 dvhgrp 41106 dvhlveclem 41107 djhval2 41398 f1o2d2 42226 fmpocos 42227 resubadd 42372 diophren 42806 monotoddzzfi 42935 ltrmynn0 42941 ltrmxnn0 42942 lermxnn0 42943 rmyeq 42947 lermy 42948 jm2.21 42987 radcnvrat 44307 dvconstbi 44327 expgrowth 44328 bi3impb 44478 xlimmnfvlem2 45834 xlimpnfvlem2 45838 fnotaovb 47202 tposcurf1 49304 precofvalALT 49373 onetansqsecsq 49766 |
| Copyright terms: Public domain | W3C validator |