| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3 1132 syl3an132 1166 3impdi 1351 rsp2e 3250 vtocl3gf 3524 vtocl3g 3526 rspc2ev 3585 reuss 4272 frc 5574 trssord 6318 funtp 6533 resdif 6779 f1cdmsn 7211 f1ofvswap 7235 fnotovb 7393 fovcdm 7511 fnovrn 7516 fmpoco 8020 smoord 8280 odi 8489 oeoa 8507 oeoe 8509 nndi 8533 ecopovtrn 8739 ecovass 8743 ecovdi 8744 unfi 9075 entrfil 9089 domtrfil 9096 f1imaenfi 9099 suppr 9351 infpr 9384 harval2 9885 fin23lem31 10229 tskuni 10669 addasspi 10781 mulasspi 10783 distrpi 10784 mulcanenq 10846 genpass 10895 distrlem1pr 10911 prlem934 10919 ltapr 10931 le2tri3i 11238 subadd 11358 addsub 11366 subdi 11545 submul2 11552 ltaddsub 11586 leaddsub 11588 divval 11773 diveq0 11781 div12 11793 diveq1 11801 divneg 11808 divdiv2 11828 ltmulgt11 11976 gt0div 11983 ge0div 11984 uzind3 12562 fnn0ind 12567 qdivcl 12863 irrmul 12867 xrlttr 13034 fzen 13436 modcyc 13805 modcyc2 13806 rpexpmord 14070 faclbnd4lem4 14198 ccatval21sw 14488 lswccatn0lsw 14494 ccatpfx 14603 ccatopth 14618 cshweqdifid 14722 lenegsq 15223 moddvds 16169 dvdscmulr 16190 dvdsmulcr 16191 dvds2add 16196 dvds2sub 16197 dvdsleabs 16217 divalg 16309 divalgb 16310 ndvdsadd 16316 gcdcllem3 16407 dvdslegcd 16410 modgcd 16438 absmulgcd 16455 odzval 16698 pcmul 16758 ressid2 17140 ressval2 17141 catcisolem 18012 prf1st 18105 prf2nd 18106 1st2ndprf 18107 curfuncf 18139 curf2ndf 18148 pltval 18231 pospo 18244 lubel 18415 isdlat 18423 submgmcl 18610 prdssgrpd 18636 issubmnd 18664 prdsmndd 18673 submcl 18715 grpinvid1 18899 grpinvid2 18900 mulgp1 19015 ghmlin 19128 ghmsub 19131 odlem2 19446 gexlem2 19489 lsmvalx 19546 efgtval 19630 cmncom 19705 lssvnegcl 20884 islss3 20887 prdslmodd 20897 zntoslem 21488 evlslem2 22009 evlseu 22013 maducoeval2 22550 madutpos 22552 madugsum 22553 madurid 22554 m2cpminvid 22663 pm2mpghm 22726 unopn 22813 ntrss 22965 innei 23035 t1sep2 23279 metustsym 24465 cncfi 24809 rrxds 25315 quotval 26222 abelthlem2 26364 mudivsum 27463 padicabv 27563 nosupfv 27640 nosupres 27641 noinffv 27655 ssltsepc 27729 divsval 28123 axsegconlem1 28890 nsnlplig 30453 nsnlpligALT 30454 grpoinvid1 30500 grpoinvid2 30501 grpodivval 30507 ablo4 30522 ablonncan 30528 nvnpcan 30628 nvmeq0 30630 nvabs 30644 imsdval 30658 ipval 30675 nmorepnf 30740 blo3i 30774 blometi 30775 ipasslem5 30807 hvmulcan 31044 his5 31058 his7 31062 his2sub2 31065 hhssabloilem 31233 hhssnv 31236 fh1 31590 fh2 31591 cm2j 31592 homcl 31718 homco1 31773 homulass 31774 hoadddi 31775 hosubsub2 31784 braadd 31917 bramul 31918 lnopmul 31939 lnopli 31940 lnopaddmuli 31945 lnopsubmuli 31947 lnfnli 32012 lnfnaddmuli 32017 kbass2 32089 mdexchi 32307 xdivval 32891 resvid2 33287 resvval2 33288 fedgmullem2 33635 unitdivcld 33906 bnj229 34888 bnj546 34900 bnj570 34909 rankfilimb 35105 cusgredgex2 35159 loop1cycl 35173 cvmlift2lem7 35345 finminlem 36352 ivthALT 36369 topdifinffinlem 37381 lindsadd 37653 exidcl 37916 grposnOLD 37922 rngoneglmul 37983 rngonegrmul 37984 divrngcl 37997 crngocom 38041 crngm4 38043 inidl 38070 xrninxpex 38426 oposlem 39221 hlsuprexch 39420 ldilcnv 40154 ltrnu 40160 tgrpgrplem 40788 tgrpabl 40790 erngdvlem3 41029 erngdvlem3-rN 41037 dvalveclem 41064 dvhfvadd 41130 dvhgrp 41146 dvhlveclem 41147 djhval2 41438 f1o2d2 42266 fmpocos 42267 resubadd 42412 diophren 42846 monotoddzzfi 42975 ltrmynn0 42981 ltrmxnn0 42982 lermxnn0 42983 rmyeq 42987 lermy 42988 jm2.21 43027 radcnvrat 44347 dvconstbi 44367 expgrowth 44368 bi3impb 44517 xlimmnfvlem2 45871 xlimpnfvlem2 45875 fnotaovb 47229 tposcurf1 49331 precofvalALT 49400 onetansqsecsq 49793 |
| Copyright terms: Public domain | W3C validator |