![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impb | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1111 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adant3 1132 3impdi 1350 rsp2e 3284 vtocl3gf 3585 vtocl3g 3587 rspc2ev 3648 reuss 4346 frc 5663 trssord 6412 funtp 6635 resdif 6883 f1cdmsn 7318 f1ofvswap 7342 fnotovb 7500 fovcdm 7620 fnovrn 7625 fmpoco 8136 smoord 8421 odi 8635 oeoa 8653 oeoe 8655 nndi 8679 ecopovtrn 8878 ecovass 8882 ecovdi 8883 unfi 9238 entrfil 9251 domtrfil 9258 f1imaenfi 9261 suppr 9540 infpr 9572 harval2 10066 fin23lem31 10412 tskuni 10852 addasspi 10964 mulasspi 10966 distrpi 10967 mulcanenq 11029 genpass 11078 distrlem1pr 11094 prlem934 11102 ltapr 11114 le2tri3i 11420 subadd 11539 addsub 11547 subdi 11723 submul2 11730 ltaddsub 11764 leaddsub 11766 divval 11951 diveq0 11959 div12 11971 diveq1 11979 divneg 11986 divdiv2 12006 ltmulgt11 12154 gt0div 12161 ge0div 12162 uzind3 12737 fnn0ind 12742 qdivcl 13035 irrmul 13039 xrlttr 13202 fzen 13601 modcyc 13957 modcyc2 13958 rpexpmord 14218 faclbnd4lem4 14345 ccatval21sw 14633 lswccatn0lsw 14639 ccatpfx 14749 ccatopth 14764 cshweqdifid 14868 lenegsq 15369 moddvds 16313 dvdscmulr 16333 dvdsmulcr 16334 dvds2add 16338 dvds2sub 16339 dvdsleabs 16359 divalg 16451 divalgb 16452 ndvdsadd 16458 gcdcllem3 16547 dvdslegcd 16550 modgcd 16579 absmulgcd 16596 odzval 16838 pcmul 16898 ressid2 17291 ressval2 17292 catcisolem 18177 prf1st 18273 prf2nd 18274 1st2ndprf 18275 curfuncf 18308 curf2ndf 18317 pltval 18402 pospo 18415 lubel 18584 isdlat 18592 submgmcl 18745 prdssgrpd 18771 issubmnd 18799 prdsmndd 18805 submcl 18847 grpinvid1 19031 grpinvid2 19032 mulgp1 19147 ghmlin 19261 ghmsub 19264 odlem2 19581 gexlem2 19624 lsmvalx 19681 efgtval 19765 cmncom 19840 lssvnegcl 20977 islss3 20980 prdslmodd 20990 zntoslem 21598 evlslem2 22126 evlseu 22130 maducoeval2 22667 madutpos 22669 madugsum 22670 madurid 22671 m2cpminvid 22780 pm2mpghm 22843 unopn 22930 ntrss 23084 innei 23154 t1sep2 23398 metustsym 24589 cncfi 24939 rrxds 25446 quotval 26352 abelthlem2 26494 mudivsum 27592 padicabv 27692 nosupfv 27769 nosupres 27770 noinffv 27784 ssltsepc 27856 divsval 28233 axsegconlem1 28950 nsnlplig 30513 nsnlpligALT 30514 grpoinvid1 30560 grpoinvid2 30561 grpodivval 30567 ablo4 30582 ablonncan 30588 nvnpcan 30688 nvmeq0 30690 nvabs 30704 imsdval 30718 ipval 30735 nmorepnf 30800 blo3i 30834 blometi 30835 ipasslem5 30867 hvmulcan 31104 his5 31118 his7 31122 his2sub2 31125 hhssabloilem 31293 hhssnv 31296 fh1 31650 fh2 31651 cm2j 31652 homcl 31778 homco1 31833 homulass 31834 hoadddi 31835 hosubsub2 31844 braadd 31977 bramul 31978 lnopmul 31999 lnopli 32000 lnopaddmuli 32005 lnopsubmuli 32007 lnfnli 32072 lnfnaddmuli 32077 kbass2 32149 mdexchi 32367 xdivval 32883 resvid2 33319 resvval2 33320 fedgmullem2 33643 unitdivcld 33847 bnj229 34860 bnj546 34872 bnj570 34881 cusgredgex2 35090 loop1cycl 35105 cvmlift2lem7 35277 finminlem 36284 ivthALT 36301 topdifinffinlem 37313 lindsadd 37573 exidcl 37836 grposnOLD 37842 rngoneglmul 37903 rngonegrmul 37904 divrngcl 37917 crngocom 37961 crngm4 37963 inidl 37990 xrninxpex 38350 oposlem 39138 hlsuprexch 39338 ldilcnv 40072 ltrnu 40078 tgrpgrplem 40706 tgrpabl 40708 erngdvlem3 40947 erngdvlem3-rN 40955 dvalveclem 40982 dvhfvadd 41048 dvhgrp 41064 dvhlveclem 41065 djhval2 41356 f1o2d2 42228 fmpocos 42229 resubadd 42355 diophren 42769 monotoddzzfi 42899 ltrmynn0 42905 ltrmxnn0 42906 lermxnn0 42907 rmyeq 42911 lermy 42912 jm2.21 42951 radcnvrat 44283 dvconstbi 44303 expgrowth 44304 bi3impb 44454 eel132 44673 xlimmnfvlem2 45754 xlimpnfvlem2 45758 fnotaovb 47113 onetansqsecsq 48853 |
Copyright terms: Public domain | W3C validator |