![]() |
Metamath
Proof Explorer Theorem List (p. 448 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | e21 44701 | A virtual deduction elimination rule (see syl6ci 71). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e21an 44702 | Conjunction form of e21 44701. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee21an 44703 | e21an 44702 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | e333 44704 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
Theorem | e33 44705 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e33an 44706 | Conjunction form of e33 44705. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee33an 44707 | e33an 44706 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e3 44708 | Meta-connective form of syl8 76. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e3bi 44709 | Biconditional form of e3 44708. syl8ib 256 is e3bi 44709 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 ↔ 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e3bir 44710 | Right biconditional form of e3 44708. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e03 44711 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee03 44712 | e03 44711 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e03an 44713 | Conjunction form of e03 44711. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee03an 44714 | Conjunction form of ee03 44712. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e30 44715 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee30 44716 | e30 44715 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e30an 44717 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee30an 44718 | Conjunction form of ee30 44716. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e13 44719 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | e13an 44720 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee13an 44721 | e13an 44720 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | e31 44722 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee31 44723 | e31 44722 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e31an 44724 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee31an 44725 | e31an 44724 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e23 44726 | A virtual deduction elimination rule (see syl10 79). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | e23an 44727 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee23an 44728 | e23an 44727 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) | ||
Theorem | e32 44729 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee32 44730 | e32 44729 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e32an 44731 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee32an 44732 | e33an 44706 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
Theorem | e123 44733 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 ) | ||
Theorem | ee123 44734 | e123 44733 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜁))) | ||
Theorem | el123 44735 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜏 ▶ 𝜂 ) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) | ||
Theorem | e233 44736 | A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜁 ) | ||
Theorem | e323 44737 | A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
Theorem | e000 44738 | A virtual deduction elimination rule. The non-virtual deduction form of e000 44738 is the virtual deduction form. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ 𝜃 | ||
Theorem | e00 44739 | Elimination rule identical to mp2 9. The non-virtual deduction form is the virtual deduction form, which is mp2 9. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
Theorem | e00an 44740 | Elimination rule identical to mp2an 691. The non-virtual deduction form is the virtual deduction form, which is mp2an 691. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | eel00cT 44741 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (⊤ → 𝜒) | ||
Theorem | eelTT 44742 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | e0a 44743 | Elimination rule identical to ax-mp 5. The non-virtual deduction form is the virtual deduction form, which is ax-mp 5. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | eelT 44744 | An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | eel0cT 44745 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (⊤ → 𝜓) | ||
Theorem | eelT0 44746 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | e0bi 44747 | Elimination rule identical to mpbi 230. The non-virtual deduction form is the virtual deduction form, which is mpbi 230. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | e0bir 44748 | Elimination rule identical to mpbir 231. The non-virtual deduction form is the virtual deduction form, which is mpbir 231. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 ↔ 𝜑) ⇒ ⊢ 𝜓 | ||
Theorem | uun0.1 44749 | Convention notation form of un0.1 44750. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((⊤ ∧ 𝜓) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | un0.1 44750 | ⊤ is the constant true, a tautology (see df-tru 1540). Kleene's "empty conjunction" is logically equivalent to ⊤. In a virtual deduction we shall interpret ⊤ to be the empty wff or the empty collection of virtual hypotheses. ⊤ in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ⊤ ▶ 𝜑 ) & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( ( ⊤ , 𝜓 ) ▶ 𝜃 ) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
Theorem | uunT1 44751 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accommodate a possible future version of df-tru 1540. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT1p1 44752 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT21 44753 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun121 44754 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun121p1 44755 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun132 44756 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun132p1 44757 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | anabss7p1 44758 | A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the zeroth permutation did not exist in set.mm as anabss7 672. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | un10 44759 | A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , ⊤ ) ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ 𝜓 ) | ||
Theorem | un01 44760 | A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( ⊤ , 𝜑 ) ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ 𝜓 ) | ||
Theorem | un2122 44761 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun2131 44762 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun2131p1 44763 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uunTT1 44764 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ ⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunTT1p1 44765 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ 𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunTT1p2 44766 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT11 44767 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT11p1 44768 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ ⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT11p2 44769 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | uunT12 44770 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uunT12p1 44771 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((⊤ ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uunT12p2 44772 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ ⊤ ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uunT12p3 44773 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ ⊤ ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uunT12p4 44774 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uunT12p5 44775 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜑 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun111 44776 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 3anidm12p1 44777 | A deduction unionizing a non-unionized collection of virtual hypotheses. 3anidm12 1419 denotes the deduction which would have been named uun112 if it did not pre-exist in set.mm. This second permutation's name is based on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm12p2 44778 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | uun123 44779 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun123p1 44780 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun123p2 44781 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun123p3 44782 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun123p4 44783 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | uun2221 44784 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | uun2221p1 44785 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | uun2221p2 44786 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | 3impdirp1 44787 | A deduction unionizing a non-unionized collection of virtual hypotheses. Commuted version of 3impdir 1351. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜒 ∧ 𝜓) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | ||
Theorem | 3impcombi 44788 | A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | trsspwALT 44789 | Virtual deduction proof of the left-to-right implication of dftr4 5290. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5290 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
Theorem | trsspwALT2 44790 | Virtual deduction proof of trsspwALT 44789. This proof is the same as the proof of trsspwALT 44789 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
Theorem | trsspwALT3 44791 | Short predicate calculus proof of the left-to-right implication of dftr4 5290. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 44790, which is the virtual deduction proof trsspwALT 44789 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
Theorem | sspwtr 44792 | Virtual deduction proof of the right-to-left implication of dftr4 5290. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 44792 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
Theorem | sspwtrALT 44793 | Virtual deduction proof of sspwtr 44792. This proof is the same as the proof of sspwtr 44792 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
Theorem | sspwtrALT2 44794 | Short predicate calculus proof of the right-to-left implication of dftr4 5290. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44793, which is the virtual deduction proof sspwtr 44792 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
Theorem | pwtrVD 44795 | Virtual deduction proof of pwtr 5472; see pwtrrVD 44796 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 → Tr 𝒫 𝐴) | ||
Theorem | pwtrrVD 44796 | Virtual deduction proof of pwtr 5472; see pwtrVD 44795 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝒫 𝐴 → Tr 𝐴) | ||
Theorem | suctrALT 44797 | The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT 44797 using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html 44797 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr 6481 for the original proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare, 12-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
Theorem | snssiALTVD 44798 | Virtual deduction proof of snssiALT 44799. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | ||
Theorem | snssiALT 44799 | If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4833. This theorem was automatically generated from snssiALTVD 44798 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | ||
Theorem | snsslVD 44800 | Virtual deduction proof of snssl 44801. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |