| Metamath
Proof Explorer Theorem List (p. 448 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | e20an 44701 | Conjunction form of e20 44700. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee20an 44702 | e20an 44701 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
| Theorem | e21 44703 | A virtual deduction elimination rule (see syl6ci 71). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | e21an 44704 | Conjunction form of e21 44703. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee21an 44705 | e21an 44704 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
| Theorem | e333 44706 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
| Theorem | e33 44707 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | e33an 44708 | Conjunction form of e33 44707. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee33an 44709 | e33an 44708 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e3 44710 | Meta-connective form of syl8 76. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e3bi 44711 | Biconditional form of e3 44710. syl8ib 256 is e3bi 44711 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜃 ↔ 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e3bir 44712 | Right biconditional form of e3 44710. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e03 44713 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee03 44714 | e03 44713 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜑 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
| Theorem | e03an 44715 | Conjunction form of e03 44713. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee03an 44716 | Conjunction form of ee03 44714. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜂))) | ||
| Theorem | e30 44717 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee30 44718 | e30 44717 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e30an 44719 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee30an 44720 | Conjunction form of ee30 44718. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ 𝜏 & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e13 44721 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | e13an 44722 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee13an 44723 | e13an 44722 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||
| Theorem | e31 44724 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee31 44725 | e31 44724 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e31an 44726 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee31an 44727 | e31an 44726 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e23 44728 | A virtual deduction elimination rule (see syl10 79). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | e23an 44729 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee23an 44730 | e23an 44729 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) | ||
| Theorem | e32 44731 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee32 44732 | e32 44731 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e32an 44733 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee32an 44734 | e33an 44708 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||
| Theorem | e123 44735 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 ) | ||
| Theorem | ee123 44736 | e123 44735 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) & ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜁))) | ||
| Theorem | el123 44737 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜏 ▶ 𝜂 ) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) | ||
| Theorem | e233 44738 | A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜁 ) | ||
| Theorem | e323 44739 | A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) | ||
| Theorem | e000 44740 | A virtual deduction elimination rule. The non-virtual deduction form of e000 44740 is the virtual deduction form. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ 𝜃 | ||
| Theorem | e00 44741 | Elimination rule identical to mp2 9. The non-virtual deduction form is the virtual deduction form, which is mp2 9. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
| Theorem | e00an 44742 | Elimination rule identical to mp2an 692. The non-virtual deduction form is the virtual deduction form, which is mp2an 692. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
| Theorem | eel00cT 44743 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (⊤ → 𝜒) | ||
| Theorem | eelTT 44744 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
| Theorem | e0a 44745 | Elimination rule identical to ax-mp 5. The non-virtual deduction form is the virtual deduction form, which is ax-mp 5. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | eelT 44746 | An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | eel0cT 44747 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (⊤ → 𝜓) | ||
| Theorem | eelT0 44748 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
| Theorem | e0bi 44749 | Elimination rule identical to mpbi 230. The non-virtual deduction form is the virtual deduction form, which is mpbi 230. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | e0bir 44750 | Elimination rule identical to mpbir 231. The non-virtual deduction form is the virtual deduction form, which is mpbir 231. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 ↔ 𝜑) ⇒ ⊢ 𝜓 | ||
| Theorem | uun0.1 44751 | Convention notation form of un0.1 44752. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((⊤ ∧ 𝜓) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | un0.1 44752 | ⊤ is the constant true, a tautology (see df-tru 1543). Kleene's "empty conjunction" is logically equivalent to ⊤. In a virtual deduction we shall interpret ⊤ to be the empty wff or the empty collection of virtual hypotheses. ⊤ in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ⊤ ▶ 𝜑 ) & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( ( ⊤ , 𝜓 ) ▶ 𝜃 ) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
| Theorem | uunT1 44753 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accommodate a possible future version of df-tru 1543. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT1p1 44754 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT21 44755 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun121 44756 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun121p1 44757 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun132 44758 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun132p1 44759 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | anabss7p1 44760 | A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the zeroth permutation did not exist in set.mm as anabss7 673. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
| Theorem | un10 44761 | A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ( 𝜑 , ⊤ ) ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ 𝜓 ) | ||
| Theorem | un01 44762 | A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ( ⊤ , 𝜑 ) ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ 𝜓 ) | ||
| Theorem | un2122 44763 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun2131 44764 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun2131p1 44765 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uunTT1 44766 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ ⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunTT1p1 44767 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ 𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunTT1p2 44768 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT11 44769 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT11p1 44770 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ ⊤ ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT11p2 44771 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜑 ∧ ⊤) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | uunT12 44772 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uunT12p1 44773 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((⊤ ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uunT12p2 44774 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ ⊤ ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uunT12p3 44775 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ ⊤ ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uunT12p4 44776 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uunT12p5 44777 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ 𝜑 ∧ ⊤) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun111 44778 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 3anidm12p1 44779 | A deduction unionizing a non-unionized collection of virtual hypotheses. 3anidm12 1421 denotes the deduction which would have been named uun112 if it did not pre-exist in set.mm. This second permutation's name is based on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | 3anidm12p2 44780 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | uun123 44781 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun123p1 44782 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun123p2 44783 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun123p3 44784 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun123p4 44785 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | uun2221 44786 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
| Theorem | uun2221p1 44787 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
| Theorem | uun2221p2 44788 | A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
| Theorem | 3impdirp1 44789 | A deduction unionizing a non-unionized collection of virtual hypotheses. Commuted version of 3impdir 1352. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜒 ∧ 𝜓) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | ||
| Theorem | 3impcombi 44790 | A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | ||
| Theorem | trsspwALT 44791 | Virtual deduction proof of the left-to-right implication of dftr4 5208. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5208 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
| Theorem | trsspwALT2 44792 | Virtual deduction proof of trsspwALT 44791. This proof is the same as the proof of trsspwALT 44791 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
| Theorem | trsspwALT3 44793 | Short predicate calculus proof of the left-to-right implication of dftr4 5208. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 44792, which is the virtual deduction proof trsspwALT 44791 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) | ||
| Theorem | sspwtr 44794 | Virtual deduction proof of the right-to-left implication of dftr4 5208. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 44794 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
| Theorem | sspwtrALT 44795 | Virtual deduction proof of sspwtr 44794. This proof is the same as the proof of sspwtr 44794 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
| Theorem | sspwtrALT2 44796 | Short predicate calculus proof of the right-to-left implication of dftr4 5208. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44795, which is the virtual deduction proof sspwtr 44794 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | ||
| Theorem | pwtrVD 44797 | Virtual deduction proof of pwtr 5399; see pwtrrVD 44798 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Tr 𝐴 → Tr 𝒫 𝐴) | ||
| Theorem | pwtrrVD 44798 | Virtual deduction proof of pwtr 5399; see pwtrVD 44797 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝒫 𝐴 → Tr 𝐴) | ||
| Theorem | suctrALT 44799 | The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT 44799 using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html 44799 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr 6399 for the original proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare, 12-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
| Theorem | snssiALTVD 44800 | Virtual deduction proof of snssiALT 44801. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |