Home | Metamath
Proof Explorer Theorem List (p. 448 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fnotaovb 44701 | Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6832. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) | ||
Theorem | ffnaov 44702* | An operation maps to a class to which all values belong, analogous to ffnov 7410. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) | ||
Theorem | faovcl 44703 | Closure law for an operation, analogous to fovcl 7411. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) | ||
Theorem | aovmpt4g 44704* | Value of a function given by the maps-to notation, analogous to ovmpt4g 7429. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) | ||
Theorem | aoprssdm 44705* | Domain of closure of an operation. In contrast to oprssdm 7462, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) ⇒ ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 | ||
Theorem | ndmaovcl 44706 | The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7466 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) & ⊢ ((𝐴𝐹𝐵)) ∈ V ⇒ ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 | ||
Theorem | ndmaovrcl 44707 | Reverse closure law, in contrast to ndmovrcl 7467 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | ||
Theorem | ndmaovcom 44708 | Any operation is commutative outside its domain, analogous to ndmovcom 7468. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) | ||
Theorem | ndmaovass 44709 | Any operation is associative outside its domain. In contrast to ndmovass 7469 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) ) | ||
Theorem | ndmaovdistr 44710 | Any operation is distributive outside its domain. In contrast to ndmovdistr 7470 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ dom 𝐺 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) ) | ||
In the following, a second approach is followed to define function values alternately to df-afv 44623. The current definition of the value (𝐹‘𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6445) assures that this value is always a set, see fex 7111. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6813 and fvprc 6775). "(𝐹‘𝐴) is meaningful" means "the class 𝐹 regarded as function is defined at the argument 𝐴" in this context. This is also expressed by 𝐹 defAt 𝐴, see df-dfat 44622. In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴. Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹‘𝐴) = ∅ alone it cannot be decided/derived whether (𝐹‘𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value ∅ at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹, 𝐹 defAt 𝐴, or Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6814). To avoid such an ambiguity, an alternative definition (𝐹''''𝐴) (see df-afv2 44712) would be possible which evaluates to a set not belonging to the range of 𝐹 ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) if it is not meaningful (see ndfatafv2 44714). We say "(𝐹''''𝐴) is not defined (or undefined)" if (𝐹''''𝐴) is not in the range of 𝐹 ((𝐹''''𝐴) ∉ ran 𝐹). Because of afv2ndefb 44727, this is equivalent to ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹. If (𝐹''''𝐴) is in the range of 𝐹 ((𝐹''''𝐴) ∈ ran 𝐹), we say that "(𝐹''''𝐴) is defined". If ran 𝐹 is a set, we can use the symbol Undef to express that (𝐹''''𝐴) is not defined: (𝐹''''𝐴) = (Undef‘ran 𝐹) (see ndfatafv2undef 44715). We could have used this symbol directly to define the alternate value of a function, which would have the advantage that (𝐹''''𝐴) would always be a set. But first this symbol is defined using the original function value, which would not make it possible to replace the original definition by the alternate definition, and second we would have to assume that ran 𝐹 ∈ V in most of the theorems. To summarize, that means (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅ (see afv2ndeffv0 44763), but (𝐹‘𝐴) = ∅ → (𝐹''''𝐴) ∉ ran 𝐹 is not generally valid, see afv2fv0 44768. The alternate definition, however, corresponds to the current definition ((𝐹‘𝐴) = (𝐹''''𝐴)) if the function 𝐹 is defined at 𝐴 (see dfatafv2eqfv 44764). With this definition the following intuitive equivalence holds: (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹), see dfatafv2rnb 44730. An interesting question would be if (𝐹‘𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 24) proofs using the definition df-fv 6445 of (𝐹‘𝐴), we see that analogues for the following 7 theorems can be proven using the alternative definition: fveq1 6782-> afv2eq1 44719, fveq2 6783-> afv2eq2 44720, nffv 6793-> nfafv2 44721, csbfv12 6826-> csbafv212g , rlimdm 15269-> rlimdmafv2 44761, tz6.12-1 6805-> tz6.12-1-afv2 44744, fveu 6772-> afv2eu 44741. Six theorems proved by directly using df-fv 6445 are within a mathbox (fvsb 42077, uncov 35767) or not used (rlimdmafv 44680, avril1 28836) or experimental (dfafv2 44635, dfafv22 44762). However, the remaining 11 theorems proved by directly using df-fv 6445 are used more or less often: * fvex 6796: used in about 1600 proofs: Only if the function is defined at the argument, or the range of the function/class is a set, analog theorems can be proven (dfatafv2ex 44716 resp. afv2ex 44717). All of these 1600 proofs have to be checked if one of these two theorems can be used instead of fvex 6796. * fvres 6802: used in about 400 proofs : Only if the function is defined at the argument, an analog theorem can be proven (afv2res 44742). In the undefined case such a theorem cannot exist (without additional assumtions), because the range of (𝐹 ↾ 𝐵) is mostly different from the range of 𝐹, and therefore also the "undefined" values are different. All of these 400 proofs have to be checked if afv2res 44742 can be used instead of fvres 6802. * tz6.12-2 6771 (-> tz6.12-2-afv2 44740): root theorem of many theorems which have not a strict analogue, and which are used many times: ** fvprc 6775 (-> afv2prc 44729), used in 193 proofs, ** tz6.12i 6809 (-> tz6.12i-afv2 44746), used - indirectly via fvbr0 6810 and fvrn0 6811 - in 19 proofs, and in fvclss 7124 used in fvclex 7810 used in fvresex 7811 (which is not used!) and in dcomex 10212 (used in 4 proofs), ** ndmfv 6813 (-> ndmafv2nrn ), used in 124 proofs ** nfunsn 6820 (-> nfunsnafv2 ), used by fvfundmfvn0 6821 (used in 3 proofs), and dffv2 6872 (not used) ** funpartfv 34256, setrec2lem1 46410 (mathboxes) * fv2 6778: only used by elfv 6781, which is only used by fv3 6801, which is not used. * dffv3 6779 (-> dfafv23 ): used by dffv4 6780 (the previous "df-fv"), which now is only used in mathboxes (csbfv12gALTVD 42526), by shftval 14794 (itself used in 11 proofs), by dffv5 34235 (mathbox) and by fvco2 6874 (-> afv2co2 44760). * fvopab5 6916: used only by ajval 29232 (not used) and by adjval 30261, which is used in adjval2 30262 (not used) and in adjbdln 30454 (used in 7 proofs). * zsum 15439: used (via isum 15440, sum0 15442, sumss 15445 and fsumsers 15449) in 76 proofs. * isumshft 15560: used in pserdv2 25598 (used in logtayl 25824, binomcxplemdvsum 41980) , eftlub 15827 (used in 4 proofs), binomcxplemnotnn0 41981 (used in binomcxp 41982 only) and logtayl 25824 (used in 4 proofs). * ovtpos 8066: used in 16 proofs. * zprod 15656: used in 3 proofs: iprod 15657, zprodn0 15658 and prodss 15666 * iprodclim3 15719: not used! As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6778, dffv3 6779, fvopab5 6916, zsum 15439, isumshft 15560, ovtpos 8066 and zprod 15656 are not critical or are, hopefully, also valid for the alternative definition, fvex 6796, fvres 6802 and tz6.12-2 6771 (and the theorems based on them) are essential for the current definition of function values. | ||
Syntax | cafv2 44711 | Extend the definition of a class to include the alternate function value. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". For using several apostrophes as a symbol see comment for cafv 44620. |
class (𝐹''''𝐴) | ||
Definition | df-afv2 44712* | Alternate definition of the value of a function, (𝐹''''𝐴), also known as function application (and called "alternate function value" in the following). In contrast to (𝐹‘𝐴) = ∅ (see comment of df-fv 6445, and especially ndmfv 6813), (𝐹''''𝐴) is guaranteed not to be in the range of 𝐹 if 𝐹 is not defined at 𝐴 (whereas ∅ can be a member of ran 𝐹). (Contributed by AV, 2-Sep-2022.) |
⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | ||
Theorem | dfatafv2iota 44713* | If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | ||
Theorem | ndfatafv2 44714 | The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | ||
Theorem | ndfatafv2undef 44715 | The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) | ||
Theorem | dfatafv2ex 44716 | The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) | ||
Theorem | afv2ex 44717 | The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
Theorem | afv2eq12d 44718 | Equality deduction for function value, analogous to fveq12d 6790. (Contributed by AV, 4-Sep-2022.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) | ||
Theorem | afv2eq1 44719 | Equality theorem for function value, analogous to fveq1 6782. (Contributed by AV, 4-Sep-2022.) |
⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) | ||
Theorem | afv2eq2 44720 | Equality theorem for function value, analogous to fveq2 6783. (Contributed by AV, 4-Sep-2022.) |
⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) | ||
Theorem | nfafv2 44721 | Bound-variable hypothesis builder for function value, analogous to nffv 6793. To prove a deduction version of this analogous to nffvd 6795 is not easily possible because a deduction version of nfdfat 44630 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹''''𝐴) | ||
Theorem | csbafv212g 44722 | Move class substitution in and out of a function value, analogous to csbfv12 6826, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7326. (Contributed by AV, 4-Sep-2022.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) | ||
Theorem | fexafv2ex 44723 | The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
Theorem | ndfatafv2nrn 44724 | The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.) |
⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | ndmafv2nrn 44725 | The value of a class outside its domain is not in the range, compare with ndmfv 6813. (Contributed by AV, 2-Sep-2022.) |
⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | funressndmafv2rn 44726 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | ||
Theorem | afv2ndefb 44727 | Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.) |
⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | nfunsnafv2 44728 | If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6820. (Contributed by AV, 2-Sep-2022.) |
⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | afv2prc 44729 | A function's value at a proper class is not defined, compare with fvprc 6775. (Contributed by AV, 5-Sep-2022.) |
⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | dfatafv2rnb 44730 | The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | ||
Theorem | afv2orxorb 44731 | If a set is in the range of a function, the alternate function value at a class 𝐴 equals this set or is not in the range of the function iff the alternate function value at the class 𝐴 either equals this set or is not in the range of the function. If 𝐵 ∉ ran 𝐹, both disjuncts of the exclusive or can be true: (𝐹''''𝐴) = 𝐵 → (𝐹''''𝐴) ∉ ran 𝐹. (Contributed by AV, 11-Sep-2022.) |
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | ||
Theorem | dmafv2rnb 44732 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function, iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
⊢ (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | ||
Theorem | fundmafv2rnb 44733 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | ||
Theorem | afv2elrn 44734 | An alternate function value belongs to the range of the function, analogous to fvelrn 6963. (Contributed by AV, 3-Sep-2022.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹''''𝐴) ∈ ran 𝐹) | ||
Theorem | afv20defat 44735 | If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | ||
Theorem | fnafv2elrn 44736 | An alternate function value belongs to the range of the function, analogous to fnfvelrn 6967. (Contributed by AV, 2-Sep-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ ran 𝐹) | ||
Theorem | fafv2elrn 44737 | An alternate function value belongs to the codomain of the function, analogous to ffvelrn 6968. (Contributed by AV, 2-Sep-2022.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ 𝐵) | ||
Theorem | fafv2elrnb 44738 | An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) | ||
Theorem | frnvafv2v 44739 | If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) | ||
Theorem | tz6.12-2-afv2 44740* | Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6771. (Contributed by AV, 5-Sep-2022.) |
⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
Theorem | afv2eu 44741* | The value of a function at a unique point, analogous to fveu 6772. (Contributed by AV, 5-Sep-2022.) |
⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | ||
Theorem | afv2res 44742 | The value of a restricted function for an argument at which the function is defined. Analog to fvres 6802. (Contributed by AV, 5-Sep-2022.) |
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (𝐹''''𝐴)) | ||
Theorem | tz6.12-afv2 44743* | Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6806. (Contributed by AV, 5-Sep-2022.) |
⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹''''𝐴) = 𝑦) | ||
Theorem | tz6.12-1-afv2 44744* | Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12-1 6805. (Contributed by AV, 5-Sep-2022.) |
⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦) | ||
Theorem | tz6.12c-afv2 44745* | Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6808. (Contributed by AV, 5-Sep-2022.) |
⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | ||
Theorem | tz6.12i-afv2 44746 | Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6809. (Contributed by AV, 5-Sep-2022.) |
⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) | ||
Theorem | funressnbrafv2 44747 | The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6829. (Contributed by AV, 7-Sep-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) | ||
Theorem | dfatbrafv2b 44748 | Equivalence of function value and binary relation, analogous to fnbrfvb 6831 or funbrfvb 6833. 𝐵 ∈ V is required, because otherwise 𝐴𝐹𝐵 ↔ ∅ ∈ 𝐹 can be true, but (𝐹''''𝐴) = 𝐵 is always false (because of dfatafv2ex 44716). (Contributed by AV, 6-Sep-2022.) |
⊢ ((𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
Theorem | dfatopafv2b 44749 | Equivalence of function value and ordered pair membership, analogous to fnopfvb 6832 or funopfvb 6834. (Contributed by AV, 6-Sep-2022.) |
⊢ ((𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
Theorem | funbrafv2 44750 | The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6829. (Contributed by AV, 6-Sep-2022.) |
⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) | ||
Theorem | fnbrafv2b 44751 | Equivalence of function value and binary relation, analogous to fnbrfvb 6831. (Contributed by AV, 6-Sep-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | ||
Theorem | fnopafv2b 44752 | Equivalence of function value and ordered pair membership, analogous to fnopfvb 6832. (Contributed by AV, 6-Sep-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹)) | ||
Theorem | funbrafv22b 44753 | Equivalence of function value and binary relation, analogous to funbrfvb 6833. (Contributed by AV, 6-Sep-2022.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
Theorem | funopafv2b 44754 | Equivalence of function value and ordered pair membership, analogous to funopfvb 6834. (Contributed by AV, 6-Sep-2022.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
Theorem | dfatsnafv2 44755 | Singleton of function value, analogous to fnsnfv 6856. (Contributed by AV, 7-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) | ||
Theorem | dfafv23 44756* | A definition of function value in terms of iota, analogous to dffv3 6779. (Contributed by AV, 6-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) | ||
Theorem | dfatdmfcoafv2 44757 | Domain of a function composition, analogous to dmfco 6873. (Contributed by AV, 7-Sep-2022.) |
⊢ (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹)) | ||
Theorem | dfatcolem 44758* | Lemma for dfatco 44759. (Contributed by AV, 8-Sep-2022.) |
⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | ||
Theorem | dfatco 44759 | The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) | ||
Theorem | afv2co2 44760 | Value of a function composition, analogous to fvco2 6874. (Contributed by AV, 8-Sep-2022.) |
⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) | ||
Theorem | rlimdmafv2 44761 | Two ways to express that a function has a limit, analogous to rlimdm 15269. (Contributed by AV, 5-Sep-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ''''𝐹))) | ||
Theorem | dfafv22 44762 | Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | ||
Theorem | afv2ndeffv0 44763 | If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) | ||
Theorem | dfatafv2eqfv 44764 | If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
Theorem | afv2rnfveq 44765 | If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
Theorem | afv20fv0 44766 | If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | ||
Theorem | afv2fvn0fveq 44767 | If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
Theorem | afv2fv0 44768 | If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | ||
Theorem | afv2fv0b 44769 | The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | ||
Theorem | afv2fv0xorb 44770 | If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.) |
⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | ||
Theorem | an4com24 44771 | Rearrangement of 4 conjuncts: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜓))) | ||
Theorem | 3an4ancom24 44772 | Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | 4an21 44773 | Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | ||
Syntax | cnelbr 44774 | Extend wff notation to include the 'not elemet of' relation. |
class _∉ | ||
Definition | df-nelbr 44775* | Define negated membership as binary relation. Analogous to df-eprel 5496 (the membership relation). (Contributed by AV, 26-Dec-2021.) |
⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | ||
Theorem | dfnelbr2 44776 | Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
⊢ _∉ = ((V × V) ∖ E ) | ||
Theorem | nelbr 44777 | The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) | ||
Theorem | nelbrim 44778 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴 ∈ 𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.) |
⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) | ||
Theorem | nelbrnel 44779 | A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ 𝐴 ∉ 𝐵)) | ||
Theorem | nelbrnelim 44780 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) | ||
Theorem | ralralimp 44781* | Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) |
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | ||
Theorem | otiunsndisjX 44782* | The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
⊢ (𝐵 ∈ 𝑋 → Disj 𝑎 ∈ 𝑉 ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉}) | ||
Theorem | fvifeq 44783 | Equality of function values with conditional arguments, see also fvif 6799. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) | ||
Theorem | rnfdmpr 44784 | The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | ||
Theorem | imarnf1pr 44785 | The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) | ||
Theorem | funop1 44786* | A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) | ||
Theorem | fun2dmnopgexmpl 44787 | A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Avoid depending on this detail.) |
⊢ (𝐺 = {〈0, 1〉, 〈1, 1〉} → ¬ 𝐺 ∈ (V × V)) | ||
Theorem | opabresex0d 44788* | A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
Theorem | opabbrfex0d 44789* | A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
Theorem | opabresexd 44790* | A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
Theorem | opabbrfexd 44791* | A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
Theorem | f1oresf1orab 44792* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | f1oresf1o 44793* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | f1oresf1o2 44794* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | fvmptrab 44795* | Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 6915, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.) |
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝑀 = 𝑁) & ⊢ (𝑋 ∈ 𝑉 → 𝑁 ∈ V) & ⊢ (𝑋 ∉ 𝑉 → 𝑁 = ∅) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓} | ||
Theorem | fvmptrabdm 44796* | Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 6915. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.) |
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} | ||
Theorem | cnambpcma 44797 | ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (𝐶 − 𝐵)) | ||
Theorem | cnapbmcpd 44798 | ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) − 𝐶) + 𝐷) = (((𝐴 + 𝐷) + 𝐵) − 𝐶)) | ||
Theorem | addsubeq0 44799 | The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 − 𝐵) ↔ 𝐵 = 0)) | ||
Theorem | leaddsuble 44800 | Addition and subtraction on one side of "less than or equal to". (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) ≤ 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |