HomeHome Metamath Proof Explorer
Theorem List (p. 448 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 44701-44800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfnotaovb 44701 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6832. (Contributed by Alexander van der Vekens, 26-May-2017.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
 
Theoremffnaov 44702* An operation maps to a class to which all values belong, analogous to ffnov 7410. (Contributed by Alexander van der Vekens, 26-May-2017.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
 
Theoremfaovcl 44703 Closure law for an operation, analogous to fovcl 7411. (Contributed by Alexander van der Vekens, 26-May-2017.)
𝐹:(𝑅 × 𝑆)⟶𝐶       ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶)
 
Theoremaovmpt4g 44704* Value of a function given by the maps-to notation, analogous to ovmpt4g 7429. (Contributed by Alexander van der Vekens, 26-May-2017.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
 
Theoremaoprssdm 44705* Domain of closure of an operation. In contrast to oprssdm 7462, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.)
((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆)       (𝑆 × 𝑆) ⊆ dom 𝐹
 
Theoremndmaovcl 44706 The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7466 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.)
dom 𝐹 = (𝑆 × 𝑆)    &   ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)    &    ((𝐴𝐹𝐵)) ∈ V        ((𝐴𝐹𝐵)) ∈ 𝑆
 
Theoremndmaovrcl 44707 Reverse closure law, in contrast to ndmovrcl 7467 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
dom 𝐹 = (𝑆 × 𝑆)       ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
 
Theoremndmaovcom 44708 Any operation is commutative outside its domain, analogous to ndmovcom 7468. (Contributed by Alexander van der Vekens, 26-May-2017.)
dom 𝐹 = (𝑆 × 𝑆)       (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )
 
Theoremndmaovass 44709 Any operation is associative outside its domain. In contrast to ndmovass 7469 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
dom 𝐹 = (𝑆 × 𝑆)       (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) )
 
Theoremndmaovdistr 44710 Any operation is distributive outside its domain. In contrast to ndmovdistr 7470 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
dom 𝐹 = (𝑆 × 𝑆)    &   dom 𝐺 = (𝑆 × 𝑆)       (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) )
 
20.41.5  Alternative definitions of function values (2)

In the following, a second approach is followed to define function values alternately to df-afv 44623.

The current definition of the value (𝐹𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6445) assures that this value is always a set, see fex 7111. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6813 and fvprc 6775). "(𝐹𝐴) is meaningful" means "the class 𝐹 regarded as function is defined at the argument 𝐴" in this context. This is also expressed by 𝐹 defAt 𝐴, see df-dfat 44622. In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴.

Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹𝐴) = ∅ alone it cannot be decided/derived whether (𝐹𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹, 𝐹 defAt 𝐴, or Fun 𝐹𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6814).

To avoid such an ambiguity, an alternative definition (𝐹''''𝐴) (see df-afv2 44712) would be possible which evaluates to a set not belonging to the range of 𝐹 ((𝐹''''𝐴) = 𝒫 ran 𝐹) if it is not meaningful (see ndfatafv2 44714). We say "(𝐹''''𝐴) is not defined (or undefined)" if (𝐹''''𝐴) is not in the range of 𝐹 ((𝐹''''𝐴) ∉ ran 𝐹). Because of afv2ndefb 44727, this is equivalent to ((𝐹''''𝐴) = 𝒫 ran 𝐹. If (𝐹''''𝐴) is in the range of 𝐹 ((𝐹''''𝐴) ∈ ran 𝐹), we say that "(𝐹''''𝐴) is defined".

If ran 𝐹 is a set, we can use the symbol Undef to express that (𝐹''''𝐴) is not defined: (𝐹''''𝐴) = (Undef‘ran 𝐹) (see ndfatafv2undef 44715). We could have used this symbol directly to define the alternate value of a function, which would have the advantage that (𝐹''''𝐴) would always be a set. But first this symbol is defined using the original function value, which would not make it possible to replace the original definition by the alternate definition, and second we would have to assume that ran 𝐹 ∈ V in most of the theorems.

To summarize, that means (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅ (see afv2ndeffv0 44763), but (𝐹𝐴) = ∅ → (𝐹''''𝐴) ∉ ran 𝐹 is not generally valid, see afv2fv0 44768.

The alternate definition, however, corresponds to the current definition ((𝐹𝐴) = (𝐹''''𝐴)) if the function 𝐹 is defined at 𝐴 (see dfatafv2eqfv 44764).

With this definition the following intuitive equivalence holds: (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹), see dfatafv2rnb 44730.

An interesting question would be if (𝐹𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 24) proofs using the definition df-fv 6445 of (𝐹𝐴), we see that analogues for the following 7 theorems can be proven using the alternative definition: fveq1 6782-> afv2eq1 44719, fveq2 6783-> afv2eq2 44720, nffv 6793-> nfafv2 44721, csbfv12 6826-> csbafv212g , rlimdm 15269-> rlimdmafv2 44761, tz6.12-1 6805-> tz6.12-1-afv2 44744, fveu 6772-> afv2eu 44741.

Six theorems proved by directly using df-fv 6445 are within a mathbox (fvsb 42077, uncov 35767) or not used (rlimdmafv 44680, avril1 28836) or experimental (dfafv2 44635, dfafv22 44762).

However, the remaining 11 theorems proved by directly using df-fv 6445 are used more or less often:

* fvex 6796: used in about 1600 proofs: Only if the function is defined at the argument, or the range of the function/class is a set, analog theorems can be proven (dfatafv2ex 44716 resp. afv2ex 44717). All of these 1600 proofs have to be checked if one of these two theorems can be used instead of fvex 6796.

* fvres 6802: used in about 400 proofs : Only if the function is defined at the argument, an analog theorem can be proven (afv2res 44742). In the undefined case such a theorem cannot exist (without additional assumtions), because the range of (𝐹𝐵) is mostly different from the range of 𝐹, and therefore also the "undefined" values are different. All of these 400 proofs have to be checked if afv2res 44742 can be used instead of fvres 6802.

* tz6.12-2 6771 (-> tz6.12-2-afv2 44740): root theorem of many theorems which have not a strict analogue, and which are used many times:

** fvprc 6775 (-> afv2prc 44729), used in 193 proofs,

** tz6.12i 6809 (-> tz6.12i-afv2 44746), used - indirectly via fvbr0 6810 and fvrn0 6811 - in 19 proofs, and in fvclss 7124 used in fvclex 7810 used in fvresex 7811 (which is not used!) and in dcomex 10212 (used in 4 proofs),

** ndmfv 6813 (-> ndmafv2nrn ), used in 124 proofs

** nfunsn 6820 (-> nfunsnafv2 ), used by fvfundmfvn0 6821 (used in 3 proofs), and dffv2 6872 (not used)

** funpartfv 34256, setrec2lem1 46410 (mathboxes)

* fv2 6778: only used by elfv 6781, which is only used by fv3 6801, which is not used.

* dffv3 6779 (-> dfafv23 ): used by dffv4 6780 (the previous "df-fv"), which now is only used in mathboxes (csbfv12gALTVD 42526), by shftval 14794 (itself used in 11 proofs), by dffv5 34235 (mathbox) and by fvco2 6874 (-> afv2co2 44760).

* fvopab5 6916: used only by ajval 29232 (not used) and by adjval 30261, which is used in adjval2 30262 (not used) and in adjbdln 30454 (used in 7 proofs).

* zsum 15439: used (via isum 15440, sum0 15442, sumss 15445 and fsumsers 15449) in 76 proofs.

* isumshft 15560: used in pserdv2 25598 (used in logtayl 25824, binomcxplemdvsum 41980) , eftlub 15827 (used in 4 proofs), binomcxplemnotnn0 41981 (used in binomcxp 41982 only) and logtayl 25824 (used in 4 proofs).

* ovtpos 8066: used in 16 proofs.

* zprod 15656: used in 3 proofs: iprod 15657, zprodn0 15658 and prodss 15666

* iprodclim3 15719: not used!

As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6778, dffv3 6779, fvopab5 6916, zsum 15439, isumshft 15560, ovtpos 8066 and zprod 15656 are not critical or are, hopefully, also valid for the alternative definition, fvex 6796, fvres 6802 and tz6.12-2 6771 (and the theorems based on them) are essential for the current definition of function values.

 
Syntaxcafv2 44711 Extend the definition of a class to include the alternate function value. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". For using several apostrophes as a symbol see comment for cafv 44620.
class (𝐹''''𝐴)
 
Definitiondf-afv2 44712* Alternate definition of the value of a function, (𝐹''''𝐴), also known as function application (and called "alternate function value" in the following). In contrast to (𝐹𝐴) = ∅ (see comment of df-fv 6445, and especially ndmfv 6813), (𝐹''''𝐴) is guaranteed not to be in the range of 𝐹 if 𝐹 is not defined at 𝐴 (whereas can be a member of ran 𝐹). (Contributed by AV, 2-Sep-2022.)
(𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
 
Theoremdfatafv2iota 44713* If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹𝐴)). (Contributed by AV, 2-Sep-2022.)
(𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
 
Theoremndfatafv2 44714 The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.)
𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ran 𝐹)
 
Theoremndfatafv2undef 44715 The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
((ran 𝐹𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹))
 
Theoremdfatafv2ex 44716 The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.)
(𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
 
Theoremafv2ex 44717 The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
(ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
 
Theoremafv2eq12d 44718 Equality deduction for function value, analogous to fveq12d 6790. (Contributed by AV, 4-Sep-2022.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))
 
Theoremafv2eq1 44719 Equality theorem for function value, analogous to fveq1 6782. (Contributed by AV, 4-Sep-2022.)
(𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴))
 
Theoremafv2eq2 44720 Equality theorem for function value, analogous to fveq2 6783. (Contributed by AV, 4-Sep-2022.)
(𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))
 
Theoremnfafv2 44721 Bound-variable hypothesis builder for function value, analogous to nffv 6793. To prove a deduction version of this analogous to nffvd 6795 is not easily possible because a deduction version of nfdfat 44630 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹''''𝐴)
 
Theoremcsbafv212g 44722 Move class substitution in and out of a function value, analogous to csbfv12 6826, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7326. (Contributed by AV, 4-Sep-2022.)
(𝐴𝑉𝐴 / 𝑥(𝐹''''𝐵) = (𝐴 / 𝑥𝐹''''𝐴 / 𝑥𝐵))
 
Theoremfexafv2ex 44723 The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.)
(𝐹𝑉 → (𝐹''''𝐴) ∈ V)
 
Theoremndfatafv2nrn 44724 The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.)
𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremndmafv2nrn 44725 The value of a class outside its domain is not in the range, compare with ndmfv 6813. (Contributed by AV, 2-Sep-2022.)
𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremfunressndmafv2rn 44726 The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
(𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
 
Theoremafv2ndefb 44727 Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.)
((𝐹''''𝐴) = 𝒫 ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremnfunsnafv2 44728 If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6820. (Contributed by AV, 2-Sep-2022.)
(¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremafv2prc 44729 A function's value at a proper class is not defined, compare with fvprc 6775. (Contributed by AV, 5-Sep-2022.)
𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremdfatafv2rnb 44730 The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
(𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
 
Theoremafv2orxorb 44731 If a set is in the range of a function, the alternate function value at a class 𝐴 equals this set or is not in the range of the function iff the alternate function value at the class 𝐴 either equals this set or is not in the range of the function. If 𝐵 ∉ ran 𝐹, both disjuncts of the exclusive or can be true: (𝐹''''𝐴) = 𝐵 → (𝐹''''𝐴) ∉ ran 𝐹. (Contributed by AV, 11-Sep-2022.)
(𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
 
Theoremdmafv2rnb 44732 The alternate function value at a class 𝐴 is defined, i.e., in the range of the function, iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
(Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
 
Theoremfundmafv2rnb 44733 The alternate function value at a class 𝐴 is defined, i.e., in the range of the function iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
(Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
 
Theoremafv2elrn 44734 An alternate function value belongs to the range of the function, analogous to fvelrn 6963. (Contributed by AV, 3-Sep-2022.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹''''𝐴) ∈ ran 𝐹)
 
Theoremafv20defat 44735 If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.)
((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴)
 
Theoremfnafv2elrn 44736 An alternate function value belongs to the range of the function, analogous to fnfvelrn 6967. (Contributed by AV, 2-Sep-2022.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹''''𝐵) ∈ ran 𝐹)
 
Theoremfafv2elrn 44737 An alternate function value belongs to the codomain of the function, analogous to ffvelrn 6968. (Contributed by AV, 2-Sep-2022.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ 𝐵)
 
Theoremfafv2elrnb 44738 An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
(𝐹:𝐴𝐵 → (𝐶𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹))
 
Theoremfrnvafv2v 44739 If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.)
((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)
 
Theoremtz6.12-2-afv2 44740* Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6771. (Contributed by AV, 5-Sep-2022.)
(¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹)
 
Theoremafv2eu 44741* The value of a function at a unique point, analogous to fveu 6772. (Contributed by AV, 5-Sep-2022.)
(∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
 
Theoremafv2res 44742 The value of a restricted function for an argument at which the function is defined. Analog to fvres 6802. (Contributed by AV, 5-Sep-2022.)
((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))
 
Theoremtz6.12-afv2 44743* Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6806. (Contributed by AV, 5-Sep-2022.)
((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
 
Theoremtz6.12-1-afv2 44744* Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12-1 6805. (Contributed by AV, 5-Sep-2022.)
((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦)
 
Theoremtz6.12c-afv2 44745* Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6808. (Contributed by AV, 5-Sep-2022.)
(∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
 
Theoremtz6.12i-afv2 44746 Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6809. (Contributed by AV, 5-Sep-2022.)
(𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunressnbrafv2 44747 The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6829. (Contributed by AV, 7-Sep-2022.)
(((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
 
Theoremdfatbrafv2b 44748 Equivalence of function value and binary relation, analogous to fnbrfvb 6831 or funbrfvb 6833. 𝐵 ∈ V is required, because otherwise 𝐴𝐹𝐵 ↔ ∅ ∈ 𝐹 can be true, but (𝐹''''𝐴) = 𝐵 is always false (because of dfatafv2ex 44716). (Contributed by AV, 6-Sep-2022.)
((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremdfatopafv2b 44749 Equivalence of function value and ordered pair membership, analogous to fnopfvb 6832 or funopfvb 6834. (Contributed by AV, 6-Sep-2022.)
((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremfunbrafv2 44750 The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6829. (Contributed by AV, 6-Sep-2022.)
(Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
 
Theoremfnbrafv2b 44751 Equivalence of function value and binary relation, analogous to fnbrfvb 6831. (Contributed by AV, 6-Sep-2022.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
 
Theoremfnopafv2b 44752 Equivalence of function value and ordered pair membership, analogous to fnopfvb 6832. (Contributed by AV, 6-Sep-2022.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
 
Theoremfunbrafv22b 44753 Equivalence of function value and binary relation, analogous to funbrfvb 6833. (Contributed by AV, 6-Sep-2022.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunopafv2b 44754 Equivalence of function value and ordered pair membership, analogous to funopfvb 6834. (Contributed by AV, 6-Sep-2022.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremdfatsnafv2 44755 Singleton of function value, analogous to fnsnfv 6856. (Contributed by AV, 7-Sep-2022.)
(𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))
 
Theoremdfafv23 44756* A definition of function value in terms of iota, analogous to dffv3 6779. (Contributed by AV, 6-Sep-2022.)
(𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
 
Theoremdfatdmfcoafv2 44757 Domain of a function composition, analogous to dmfco 6873. (Contributed by AV, 7-Sep-2022.)
(𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))
 
Theoremdfatcolem 44758* Lemma for dfatco 44759. (Contributed by AV, 8-Sep-2022.)
((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹𝐺)𝑦)
 
Theoremdfatco 44759 The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.)
((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
 
Theoremafv2co2 44760 Value of a function composition, analogous to fvco2 6874. (Contributed by AV, 8-Sep-2022.)
((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))
 
Theoremrlimdmafv2 44761 Two ways to express that a function has a limit, analogous to rlimdm 15269. (Contributed by AV, 5-Sep-2022.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑 → sup(𝐴, ℝ*, < ) = +∞)       (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 ''''𝐹)))
 
Theoremdfafv22 44762 Alternate definition of (𝐹''''𝐴) using (𝐹𝐴) directly. (Contributed by AV, 3-Sep-2022.)
(𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
 
Theoremafv2ndeffv0 44763 If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)
 
Theoremdfatafv2eqfv 44764 If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.)
(𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
 
Theoremafv2rnfveq 44765 If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022.)
((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
 
Theoremafv20fv0 44766 If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)
 
Theoremafv2fvn0fveq 44767 If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.)
((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))
 
Theoremafv2fv0 44768 If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
 
Theoremafv2fv0b 44769 The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
 
Theoremafv2fv0xorb 44770 If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.)
(∅ ∈ ran 𝐹 → ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
 
20.41.6  General auxiliary theorems (2)
 
20.41.6.1  Logical conjunction - extension
 
Theoreman4com24 44771 Rearrangement of 4 conjuncts: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.)
(((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜃) ∧ (𝜒𝜓)))
 
20.41.6.2  Abbreviated conjunction and disjunction of three wff's - extension
 
Theorem3an4ancom24 44772 Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.)
(((𝜑𝜓𝜒) ∧ 𝜃) ↔ ((𝜑𝜃𝜒) ∧ 𝜓))
 
Theorem4an21 44773 Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.)
(((𝜑𝜓) ∧ 𝜒𝜃) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))
 
20.41.6.3  Negated membership (alternative)
 
Syntaxcnelbr 44774 Extend wff notation to include the 'not elemet of' relation.
class _∉
 
Definitiondf-nelbr 44775* Define negated membership as binary relation. Analogous to df-eprel 5496 (the membership relation). (Contributed by AV, 26-Dec-2021.)
_∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
 
Theoremdfnelbr2 44776 Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.)
_∉ = ((V × V) ∖ E )
 
Theoremnelbr 44777 The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
 
Theoremnelbrim 44778 If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.)
(𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)
 
Theoremnelbrnel 44779 A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵𝐴𝐵))
 
Theoremnelbrnelim 44780 If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.)
(𝐴 _∉ 𝐵𝐴𝐵)
 
20.41.6.4  The empty set - extension
 
Theoremralralimp 44781* Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.)
((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
 
20.41.6.5  Indexed union and intersection - extension
 
TheoremotiunsndisjX 44782* The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
(𝐵𝑋Disj 𝑎𝑉 𝑐𝑊 {⟨𝑎, 𝐵, 𝑐⟩})
 
20.41.6.6  Functions - extension
 
Theoremfvifeq 44783 Equality of function values with conditional arguments, see also fvif 6799. (Contributed by Alexander van der Vekens, 21-May-2018.)
(𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))
 
Theoremrnfdmpr 44784 The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
 
Theoremimarnf1pr 44785 The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
((𝑋𝑉𝑌𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸𝐸:dom 𝐸𝑅) ∧ ((𝐸‘(𝐹𝑋)) = 𝐴 ∧ (𝐸‘(𝐹𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵}))
 
Theoremfunop1 44786* A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.)
(∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
 
Theoremfun2dmnopgexmpl 44787 A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Avoid depending on this detail.)
(𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ 𝐺 ∈ (V × V))
 
Theoremopabresex0d 44788* A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.)
((𝜑𝑥𝑅𝑦) → 𝑥𝐶)    &   ((𝜑𝑥𝑅𝑦) → 𝜃)    &   ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)    &   (𝜑𝐶𝑊)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
 
Theoremopabbrfex0d 44789* A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.)
((𝜑𝑥𝑅𝑦) → 𝑥𝐶)    &   ((𝜑𝑥𝑅𝑦) → 𝜃)    &   ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)    &   (𝜑𝐶𝑊)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
 
Theoremopabresexd 44790* A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
((𝜑𝑥𝑅𝑦) → 𝑥𝐶)    &   ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)    &   ((𝜑𝑥𝐶) → 𝐴𝑈)    &   ((𝜑𝑥𝐶) → 𝐵𝑉)    &   (𝜑𝐶𝑊)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
 
Theoremopabbrfexd 44791* A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.)
((𝜑𝑥𝑅𝑦) → 𝑥𝐶)    &   ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)    &   ((𝜑𝑥𝐶) → 𝐴𝑈)    &   ((𝜑𝑥𝐶) → 𝐵𝑉)    &   (𝜑𝐶𝑊)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
 
Theoremf1oresf1orab 44792* Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.)
𝐹 = (𝑥𝐴𝐶)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐷𝐴)    &   ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))       (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
 
Theoremf1oresf1o 44793* Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
(𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐷𝐴)    &   (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))       (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
 
Theoremf1oresf1o2 44794* Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
(𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐷𝐴)    &   ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))       (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
 
20.41.6.7  Maps-to notation - extension
 
Theoremfvmptrab 44795* Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 6915, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})    &   (𝑥 = 𝑋 → (𝜑𝜓))    &   (𝑥 = 𝑋𝑀 = 𝑁)    &   (𝑋𝑉𝑁 ∈ V)    &   (𝑋𝑉𝑁 = ∅)       (𝐹𝑋) = {𝑦𝑁𝜓}
 
Theoremfvmptrabdm 44796* Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 6915. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.)
𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})    &   (𝑥 = 𝑋 → (𝜑𝜓))    &   (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)       (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
 
20.41.6.8  Subtraction - extension
 
Theoremcnambpcma 44797 ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) + 𝐶) − 𝐴) = (𝐶𝐵))
 
Theoremcnapbmcpd 44798 ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) − 𝐶) + 𝐷) = (((𝐴 + 𝐷) + 𝐵) − 𝐶))
 
Theoremaddsubeq0 44799 The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴𝐵) ↔ 𝐵 = 0))
 
20.41.6.9  Ordering on reals (cont.) - extension
 
Theoremleaddsuble 44800 Addition and subtraction on one side of "less than or equal to". (Contributed by Alexander van der Vekens, 18-Mar-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) ≤ 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >