HomeHome Metamath Proof Explorer
Theorem List (p. 448 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 44701-44800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelfzelfzlble 44701 Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018.)
((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁𝑀)...𝑁))
 
20.41.6.18  Half-open integer ranges - extension
 
Theoremfzopred 44702 Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 13404. (Contributed by AV, 14-Jul-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
 
Theoremfzopredsuc 44703 Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
 
Theorem1fzopredsuc 44704 Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.)
(𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
 
Theoremel1fzopredsuc 44705 An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
(𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
 
Theoremsubsubelfzo0 44706 Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
 
Theoremfzoopth 44707 A half-open integer range can represent an ordered pair, analogous to fzopth 13222. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
 
Theorem2ffzoeq 44708* Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
(((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
 
20.41.6.19  The modulo (remainder) operation - extension
 
Theoremm1mod0mod1 44709 An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
 
Theoremelmod2 44710 An integer modulo 2 is either 0 or 1. (Contributed by AV, 24-May-2020.) (Proof shortened by OpenAI, 3-Jul-2020.)
(𝑁 ∈ ℤ → (𝑁 mod 2) ∈ {0, 1})
 
20.41.6.20  The infinite sequence builder "seq"
 
Theoremsmonoord 44711* Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 13681 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 42726? (Contributed by AV, 12-Jul-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))       (𝜑 → (𝐹𝑀) < (𝐹𝑁))
 
20.41.6.21  Finite and infinite sums - extension
 
Theoremfsummsndifre 44712* A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ)
 
Theoremfsumsplitsndif 44713* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
 
Theoremfsummmodsndifre 44714* A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ)
 
Theoremfsummmodsnunz 44715* A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
 
20.41.6.22  Extensible structures - extension
 
Theoremsetsidel 44716 The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆𝑉)    &   (𝜑𝐵𝑊)    &   𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)       (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
 
Theoremsetsnidel 44717 The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆𝑉)    &   (𝜑𝐵𝑊)    &   𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑆)    &   (𝜑𝐴𝐶)       (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝑅)
 
Theoremsetsv 44718 The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.)
((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
 
20.41.7  Preimages of function values

According to Wikipedia ("Image (mathematics)", 17-Mar-2024, https://en.wikipedia.org/wiki/ImageSupport_(mathematics)): "... evaluating a given function 𝑓 at each element of a given subset 𝐴 of its domain produces a set, called the "image of 𝐴 under (or through) 𝑓". Similarly, the inverse image (or preimage) of a given subset 𝐵 of the codomain of 𝑓 is the set of all elements of the domain that map to the members of 𝐵." The preimage of a set 𝐵 under a function 𝑓 is often denoted as "f^-1 (B)", but in set.mm, the idiom (𝑓𝐵) is used. As a special case, the idiom for the preimage of a function value at 𝑋 under a function 𝐹 is (𝐹 “ {(𝐹𝑋)}) (according to Wikipedia, the preimage of a singleton is also called a "fiber").

We use the label fragment "preima" (as in mptpreima 6130) for theorems about preimages (sometimes, also "imacnv" is used as in fvimacnvi 6911), and "preimafv" (as in preimafvn0 44720) for theorems about preimages of a function value.

In this section, 𝑃 = {𝑧 ∣ ∃𝑥𝐴𝑧 = (𝐹 “ {(𝐹𝑥)})} will be the set of all preimages of function values of a function 𝐹, that means 𝑆𝑃 is a preimage of a function value (see, for example, elsetpreimafv 44725): 𝑆 = (𝐹 “ {(𝐹𝑥)}).

With the help of such a set, it is shown that every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function (see fundcmpsurinj 44749) by constructing a surjective function 𝑔:𝐴onto𝑃 and an injective function :𝑃1-1𝐵 so that 𝐹 = (𝑔) ( see fundcmpsurinjpreimafv 44748). See also Wikipedia ("Surjective function", 17-Mar-2024, https://en.wikipedia.org/wiki/Surjective_function 44748 (section "Composition and decomposition"). This is different from the decomposition of 𝐹 into the surjective function 𝑔:𝐴onto→(𝐹𝐴) (with (𝑔𝑥) = (𝐹𝑥) for 𝑥𝐴) and the injective function = ( I ↾ (𝐹𝐴)), ( see fundcmpsurinjimaid 44751), see also Wikipedia ("Bijection, injection and surjection", 17-Mar-2024, https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection 44751 (section "Properties").

Finally, it is shown that every function 𝐹:𝐴𝐵 can be decomposed into a surjective, a bijective and an injective function (see fundcmpsurbijinj 44750), by showing that there is a bijection between the set of all preimages of values of a function and the range of the function (see imasetpreimafvbij 44746). From this, both variants of decompositions of a function into a surjective and an injective function can be derived:

Let 𝐹 = ((𝐼𝐵) ∘ 𝑆) be a decomposition of a function into a surjective, a bijective and an injective function, then 𝐹 = (𝐽𝑆) with 𝐽 = (𝐼𝐵) (an injective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinj 44749, and 𝐹 = (𝐼𝑂) with 𝑂 = (𝐵𝑆) (a surjective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinjimaid 44751.

 
Theorempreimafvsnel 44719 The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.)
((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
 
Theorempreimafvn0 44720 The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024.)
((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ≠ ∅)
 
Theoremuniimafveqt 44721* The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.)
((𝐹:𝐴𝐵𝑆𝐴𝑋𝑆) → (∀𝑥𝑆 (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑆) = (𝐹𝑋)))
 
Theoremuniimaprimaeqfv 44722 The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.)
((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))
 
Theoremsetpreimafvex 44723* The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       (𝐴𝑉𝑃 ∈ V)
 
Theoremelsetpreimafvb 44724* The characterization of an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       (𝑆𝑉 → (𝑆𝑃 ↔ ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)})))
 
Theoremelsetpreimafv 44725* An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
 
Theoremelsetpreimafvssdm 44726* An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
 
Theoremfvelsetpreimafv 44727* There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
 
Theorempreimafvelsetpreimafv 44728* The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ 𝑃)
 
Theorempreimafvsspwdm 44729* The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
 
Theorem0nelsetpreimafv 44730* The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
 
Theoremelsetpreimafvbi 44731* An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
 
Theoremelsetpreimafveqfv 44732* The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑋𝑆𝑌𝑆)) → (𝐹𝑋) = (𝐹𝑌))
 
Theoremeqfvelsetpreimafv 44733* If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → 𝑌𝑆))
 
Theoremelsetpreimafvrab 44734* An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
 
Theoremimaelsetpreimafv 44735* The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
 
Theoremuniimaelsetpreimafv 44736* The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
 
Theoremelsetpreimafveq 44737* If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
 
Theoremfundcmpsurinjlem1 44738* Lemma 1 for fundcmpsurinj 44749. (Contributed by AV, 4-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))       ran 𝐺 = 𝑃
 
Theoremfundcmpsurinjlem2 44739* Lemma 2 for fundcmpsurinj 44749. (Contributed by AV, 4-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))       ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺:𝐴onto𝑃)
 
Theoremfundcmpsurinjlem3 44740* Lemma 3 for fundcmpsurinj 44749. (Contributed by AV, 3-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
 
Theoremimasetpreimafvbijlemf 44741* Lemma for imasetpreimafvbij 44746: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
 
Theoremimasetpreimafvbijlemfv 44742* Lemma for imasetpreimafvbij 44746: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       ((𝐹 Fn 𝐴𝑌𝑃𝑋𝑌) → (𝐻𝑌) = (𝐹𝑋))
 
Theoremimasetpreimafvbijlemfv1 44743* Lemma for imasetpreimafvbij 44746: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
 
Theoremimasetpreimafvbijlemf1 44744* Lemma for imasetpreimafvbij 44746: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
 
Theoremimasetpreimafvbijlemfo 44745* Lemma for imasetpreimafvbij 44746: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
 
Theoremimasetpreimafvbij 44746* The mapping 𝐻 is a bijective function betwen the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}    &   𝐻 = (𝑝𝑃 (𝐹𝑝))       ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃1-1-onto→(𝐹𝐴))
 
Theoremfundcmpsurbijinjpreimafv 44747* Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto 𝑃, a bijective function from 𝑃 and an injective function into the codomain of 𝐹. (Contributed by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖((𝑔:𝐴onto𝑃:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑖:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
 
Theoremfundcmpsurinjpreimafv 44748* Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.)
𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}       ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
 
Theoremfundcmpsurinj 44749* Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.)
((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
 
Theoremfundcmpsurbijinj 44750* Every function 𝐹:𝐴𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.)
((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑖𝑝𝑞((𝑔:𝐴onto𝑝:𝑝1-1-onto𝑞𝑖:𝑞1-1𝐵) ∧ 𝐹 = ((𝑖) ∘ 𝑔)))
 
Theoremfundcmpsurinjimaid 44751* Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto the image (𝐹𝐴) of the domain of 𝐹 and an injective function from the image (𝐹𝐴). (Contributed by AV, 17-Mar-2024.)
𝐼 = (𝐹𝐴)    &   𝐺 = (𝑥𝐴 ↦ (𝐹𝑥))    &   𝐻 = ( I ↾ 𝐼)       (𝐹:𝐴𝐵 → (𝐺:𝐴onto𝐼𝐻:𝐼1-1𝐵𝐹 = (𝐻𝐺)))
 
TheoremfundcmpsurinjALT 44752* Alternate proof of fundcmpsurinj 44749, based on fundcmpsurinjimaid 44751: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.)
((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
 
20.41.8  Partitions of real intervals

Based on the theorems of the fourierdlem* series of GS's mathbox.

 
Syntaxciccp 44753 Extend class notation with the partitions of a closed interval of extended reals.
class RePart
 
Definitiondf-iccp 44754* Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.)
RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
 
Theoremiccpval 44755* Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.)
(𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
 
Theoremiccpart 44756* A special partition. Corresponds to fourierdlem2 43540 in GS's mathbox. (Contributed by AV, 9-Jul-2020.)
(𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
 
Theoremiccpartimp 44757 Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.)
((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
 
Theoremiccpartres 44758 The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.)
((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀))
 
Theoremiccpartxr 44759 If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))    &   (𝜑𝐼 ∈ (0...𝑀))       (𝜑 → (𝑃𝐼) ∈ ℝ*)
 
Theoremiccpartgtprec 44760 If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))    &   (𝜑𝐼 ∈ (1...𝑀))       (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
 
Theoremiccpartipre 44761 If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))    &   (𝜑𝐼 ∈ (1..^𝑀))       (𝜑 → (𝑃𝐼) ∈ ℝ)
 
Theoremiccpartiltu 44762* If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
 
Theoremiccpartigtl 44763* If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
 
Theoremiccpartlt 44764 If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 43549 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → (𝑃‘0) < (𝑃𝑀))
 
Theoremiccpartltu 44765* If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃𝑀))
 
Theoremiccpartgtl 44766* If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
 
Theoremiccpartgt 44767* If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
 
Theoremiccpartleu 44768* If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
 
Theoremiccpartgel 44769* If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑖))
 
Theoremiccpartrn 44770 If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃𝑀)))
 
Theoremiccpartf 44771 The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 43553 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)))
 
Theoremiccpartel 44772 If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       ((𝜑𝐼 ∈ (0...𝑀)) → (𝑃𝐼) ∈ ((𝑃‘0)[,](𝑃𝑀)))
 
Theoremiccelpart 44773* An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.)
(𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
 
Theoremiccpartiun 44774* A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
 
Theoremicceuelpartlem 44775 Lemma for icceuelpart 44776. (Contributed by AV, 19-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
 
Theoremicceuelpart 44776* An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
 
Theoremiccpartdisj 44777* The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))       (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
 
Theoremiccpartnel 44778 A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 43550 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 8-Jul-2020.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑃 ∈ (RePart‘𝑀))    &   (𝜑𝑋 ∈ ran 𝑃)       ((𝜑𝐼 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑃𝐼)(,)(𝑃‘(𝐼 + 1))))
 
20.41.9  Shifting functions with an integer range domain
 
Theoremfargshiftfv 44779* If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺𝑋) = (𝐹‘(𝑋 + 1))))
 
Theoremfargshiftf 44780* If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
 
Theoremfargshiftf1 44781* If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
 
Theoremfargshiftfo 44782* If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
 
Theoremfargshiftfva 44783* The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
 
20.41.10  Words over a set (extension)
 
20.41.10.1  Last symbol of a word - extension
 
Theoremlswn0 44784 The last symbol of a not empty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases ( is the last symbol) and invalid cases ( means that no last symbol exists. This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅)
 
20.41.11  Unordered pairs
 
20.41.11.1  Interchangeable setvar variables
 
Syntaxwich 44785 Extend wff notation to include the propery of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. Read this notation as "𝑥 and 𝑦 are interchangeable in wff 𝜑".
wff [𝑥𝑦]𝜑
 
Definitiondf-ich 44786* Define the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi 44794. Another, equivalent definition using two temporary setvar variables is provided in dfich2 44798. (Contributed by AV, 29-Jul-2023.)
([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
 
Theoremnfich1 44787 The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.)
𝑥[𝑥𝑦]𝜑
 
Theoremnfich2 44788 The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.)
𝑦[𝑥𝑦]𝜑
 
Theoremichv 44789* Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.)
[𝑥𝑦]𝜑
 
Theoremichf 44790 Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.)
𝑥𝜑    &   𝑦𝜑       [𝑥𝑦]𝜑
 
Theoremichid 44791 A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.)
[𝑥𝑥]𝜑
 
Theoremicht 44792 A theorem is interchangeable. (Contributed by SN, 4-May-2024.)
𝜑       [𝑥𝑦]𝜑
 
Theoremichbidv 44793* Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝑥𝑦]𝜓 ↔ [𝑥𝑦]𝜒))
 
Theoremichcircshi 44794* The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023.)
(𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑥 → (𝜓𝜒))    &   (𝑧 = 𝑦 → (𝜒𝜑))       [𝑥𝑦]𝜑
 
Theoremichan 44795 If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.) Use df-ich 44786 instead of dfich2 44798 to reduce axioms. (Revised by SN, 4-May-2024.)
(([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
 
Theoremichn 44796 Negation does not affect interchangeability. (Contributed by SN, 30-Aug-2023.)
([𝑎𝑏]𝜑 ↔ [𝑎𝑏] ¬ 𝜑)
 
Theoremichim 44797 Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.)
(([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
 
Theoremdfich2 44798* Alternate definition of the propery of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. (Contributed by AV and WL, 6-Aug-2023.)
([𝑥𝑦]𝜑 ↔ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑))
 
Theoremichcom 44799* The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.)
([𝑥𝑦]𝜓 ↔ [𝑦𝑥]𝜓)
 
Theoremichbi12i 44800* Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023.)
((𝑥 = 𝑎𝑦 = 𝑏) → (𝜓𝜒))       ([𝑥𝑦]𝜓 ↔ [𝑎𝑏]𝜒)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >