Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eel2131 | Structured version Visualization version GIF version |
Description: syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
Ref | Expression |
---|---|
eel2131.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
eel2131.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
eel2131.3 | ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
eel2131 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel2131.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | eel2131.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
3 | eel2131.3 | . . 3 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃)) → 𝜂) |
5 | 4 | 3impdi 1348 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |