Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel2131 Structured version   Visualization version   GIF version

Theorem eel2131 42223
Description: syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.)
Hypotheses
Ref Expression
eel2131.1 ((𝜑𝜓) → 𝜒)
eel2131.2 ((𝜑𝜃) → 𝜏)
eel2131.3 ((𝜒𝜏) → 𝜂)
Assertion
Ref Expression
eel2131 ((𝜑𝜓𝜃) → 𝜂)

Proof of Theorem eel2131
StepHypRef Expression
1 eel2131.1 . . 3 ((𝜑𝜓) → 𝜒)
2 eel2131.2 . . 3 ((𝜑𝜃) → 𝜏)
3 eel2131.3 . . 3 ((𝜒𝜏) → 𝜂)
41, 2, 3syl2an 595 . 2 (((𝜑𝜓) ∧ (𝜑𝜃)) → 𝜂)
543impdi 1348 1 ((𝜑𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator