| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel2131 | Structured version Visualization version GIF version | ||
| Description: syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
| Ref | Expression |
|---|---|
| eel2131.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| eel2131.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| eel2131.3 | ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| eel2131 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel2131.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | eel2131.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 3 | eel2131.3 | . . 3 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃)) → 𝜂) |
| 5 | 4 | 3impdi 1351 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |